
六年级简便运算提高版.doc
31页Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.------------------------------------------author------------------------------------------date六年级“简便运算”提高版六年级“简便运算”提高版简便计算Ø 分数混合运算的误区:例1: 改: 例2: × ÷ × 改:Ø 分数简便运算常见题型l 第一种:连乘——乘法交换律的应用例题:1) 2) 3)涉及定律:乘法交换律 基本方法:将分数相乘的因数互相交换,先行运算l 第二种:乘法分配律的应用例题:1) 2) 3) 涉及定律:乘法分配律 基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变l 第三种:乘法分配律的逆运算(提取公因数)例题:1) 2) 3) 涉及定律:乘法分配律逆向定律 基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
l 第四种:添加因数“1”例题:1) 2) 3) 涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算l 第五种:数字化加式或减式 涉及定律:乘法分配律逆向运算 基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题 注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化例如:999可化为1000-1其结果与原数字保持一致例题:1) 2) 3)l 第六种:带分数化加式 涉及定律:乘法分配律 基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算例题:1) 2) 3)l 第七种:乘法交换律与乘法分配律相结合(转化法)涉及定律:乘法交换律、乘法分配律逆向运算 基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换例题:1) 2) 3)l 第八种:有规律的分数混合运算——形如的分数(拆分法)l 基本方法:形如的分数可拆分为的形式,再进行运算例题:1) 2) l 第九种:有规律的分数混合运算——形如(a,b不为0)的分数 (拆分法)基本方法:形如(a,b不为0)的分数可拆分为的形式,再进行运算例题:1) Ø 分数简便运算课后练习一、乘法分配律的逆运算ac+bc=(a+b)c 二、添加因数“1”后,用乘法分配律 三、综合(一)××10 ××24 ×× (二)× +× ×+×0.6 6.8×+×3.2 (三)( +)×32 (+-)×12 ( - )× (四)-× ×101- + × (五)46× 2008× 36×(六) 3×25 (七)×-× 12×( - )17× (八) (九) (十)(十一) 46×222+18×666 999.8+99.8+9.8+0.6 (十二) 计算:计算: --------------------------------------------------。
