好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2019-2020年高二数学上学期段考试卷(9月份)(含解析).doc

12页
  • 卖家[上传人]:人***
  • 文档编号:386210663
  • 上传时间:2023-07-26
  • 文档格式:DOC
  • 文档大小:89KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2019-2020年高二数学上学期段考试卷(9月份)(含解析)一、填空题(共14小题,每小题3分,满分42分)1.(3分)直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,则实数a的值为.2.(3分)已知点P(0,﹣1),点Q在直线x﹣y+1=0上,若直线PQ垂直于直线x+2y﹣5=0,则点Q的坐标是.3.(3分)已知点P(a,b)在圆C:x2+y2=r2外,则直线l:ax+by=r2与圆C.4.(3分)如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y﹣1=0对称,则k﹣m的值为.5.(3分)已知O是坐标原点,点A(﹣1,1).若点M(x,y)为平面区域上的一个动点,则的取值范围是.6.(3分)已知动圆x2+y2﹣2mx﹣4my+6m﹣2=0恒过一个定点,这个定点的坐标是.7.(3分)一直线过点M(﹣3,),且被圆x2+y2=25所截得的弦长为8,则此直线方程为.8.(3分)若直线y=x+b与曲线恰有一个公共点,则实数b的取值范围为.9.(3分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y=2的距离为1,则半径r的取值范围是.10.(3分)光线沿(y≥0)被x轴反射后,与以A(2,2)为圆心的圆相切,则该圆的方程为.11.(3分)直线l:x+y﹣3=0上恰有两个点A、B到点(2,3)的距离为2,则线段AB的长为.12.(3分)如果圆(x﹣a)2+(y﹣a)2=4上总存在两个点到原点的距离为1,则实数a的取值范围是.13.(3分)若直线2ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣4y+1=0截得的弦长为4,则 +的最小值是.14.(3分)已知圆x2+y2+x﹣6y+m=0与直线x+2y﹣3=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,则m的值为.二、解答题(共6小题,满分0分)15.已知△ABC的一条内角平分线CD的方程为2x+y﹣1=0,两个顶点为A(1,2),B(﹣1,﹣1),求第三个顶点C的坐标.16.已知圆C:x2+(y﹣1)2=5,直线L:mx﹣y+1﹣m=0.①求证:对m∈R,直线L与圆C总有两个不同的交点;②求直线L中,截圆所得的弦最长及最短时的直线方程.17.已知圆O1:(x﹣3)2+(y﹣1)2=1,设点p(x,y)是圆O1上的动点.①求P点到直线l:x+y﹣1=0距离的最值,并求对应P点坐标;②分别求,y﹣x,(x+3)2+(y+4)2的最值.18.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y﹣6=0点T(﹣1,1)在AD边所在直线上.(Ⅰ)求AD边所在直线的方程;(Ⅱ)求矩形ABCD外接圆的方程;(Ⅲ)若动圆P过点N(﹣2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.19.如图,已知⊙O:x2+y2=1和定点A(2,2),由⊙O外一点P(a,b)向⊙O引切线PQ,Q为切点,且满足|PQ|=|PA|.(Ⅰ) 求实数a,b之间满足的关系式;(Ⅱ) 求线段PQ的最小值.20.已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当时,求直线CD的方程;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.江苏省镇江市扬中二中xx学年高二上学期段考数学试卷(9月份)参考答案与试题解析一、填空题(共14小题,每小题3分,满分42分)1.(3分)直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,则实数a的值为1.考点: 直线的一般式方程与直线的平行关系.专题: 计算题.分析: 利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.解答: 解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.点评: 本题考查两直线平行的条件,利用一次项系数之比相等,但不等于常数项之比,求得实数a的值.2.(3分)已知点P(0,﹣1),点Q在直线x﹣y+1=0上,若直线PQ垂直于直线x+2y﹣5=0,则点Q的坐标是(2,3).考点: 两条直线垂直与倾斜角、斜率的关系.分析: 先设出Q点坐标,再根据题目中信息得关系式.解答: 解:设Q(x,y),由题意,解得∴Q(2,3)点评: 两直线垂直且斜率存在,则斜率的乘积为﹣1.3.(3分)已知点P(a,b)在圆C:x2+y2=r2外,则直线l:ax+by=r2与圆C相交.考点: 直线与圆的位置关系.专题: 直线与圆.分析: 由点P(a,b)在圆C:x2+y2=r2外,求得a2+b2>r2,求得圆心到直线l:ax+by=r2 的距离为d<r,可得直线和圆相交.解答: 解:∵点P(a,b)在圆C:x2+y2=r2外,∴a2+b2>r2,故圆心到直线l:ax+by=r2 的距离为d=<=r,即圆心到直线l:ax+by=r2 的距离小于半径,故直线和圆相交,故答案为:相交.点评: 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.4.(3分)如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y﹣1=0对称,则k﹣m的值为4.考点: 直线与圆的位置关系;与直线关于点、直线对称的直线方程.专题: 计算题.分析: 因为直线y=kx+1与圆x2+y2+kx+my﹣4=0的两个交点关于直线x+y﹣1=0对称,所以直线y=kx+1与直线x+y﹣1=0垂直,且直线x+y﹣1=0过圆x2+y2+kx+my﹣4=0的圆心.这样直线y=kx+1与直线x+y﹣1=0垂直,斜率等于直线x+y﹣1=0的负倒数,直线x+y﹣1=0过圆x2+y2+kx+my﹣4=0的圆心,则圆心坐标满足直线方程,就可求出k,m的值,解出k﹣m.解答: 解:∵直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y﹣1=0对称,∴直线y=kx+1与直线x+y﹣1=0垂直,且直线x+y﹣1=0过圆x2+y2+kx+my﹣4=0的圆心.∴k=1,解得,m=﹣3∴k﹣m=1﹣(﹣3)=4故答案为4点评: 本题主要考查直线与圆的位置关系的判断,圆上两点一定关于直径所在的直线对称.5.(3分)已知O是坐标原点,点A(﹣1,1).若点M(x,y)为平面区域上的一个动点,则的取值范围是[0,2].考点: 简单线性规划;平面向量数量积的坐标表示、模、夹角.分析: 先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入分析比较后,即可得到的取值范围.解答: 解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,=﹣1×1+1×1=0当x=1,y=2时,=﹣1×1+1×2=1当x=0,y=2时,=﹣1×0+1×2=2故和取值范围为[0,2]故答案为:[0,2].点评: 本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.6.(3分)已知动圆x2+y2﹣2mx﹣4my+6m﹣2=0恒过一个定点,这个定点的坐标是(1,1),或(,).考点: 圆的一般方程.专题: 直线与圆.分析: 由已知得x2+y2﹣2=(2x+4y﹣6)m,从而,由此能求出定点的坐标.解答: 解:x2+y2﹣2mx﹣4my+6m﹣2=0,∴x2+y2﹣2=(2x+4y﹣6)m,∴,解得x=1,y=1,或x=,y=,∴定点的坐标是(1,1),或(,).故答案为:(1,1),或(,).点评: 本题考查动圆经过的定点坐标的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.7.(3分)一直线过点M(﹣3,),且被圆x2+y2=25所截得的弦长为8,则此直线方程为x=﹣3,3x﹣4y+15=0.考点: 直线与圆相交的性质.专题: 直线与圆.分析: 由题意可得弦心距为3,再分所求的直线的斜率存在和不存在两种情况,分别求得直线的方程.解答: 解:圆x2+y2=25的圆心为原点(0,0),半径等于5,当所求的直线的斜率不存在时,直线的方程为x=﹣3,弦心距为3,故弦长为8,满足条件.当所求的直线的斜率存在时,设所求的直线的方程为y﹣=k(x+3),即 2kx﹣2y+6k+3=0.再根据弦心距d==3=,求得 k=,可得此时直线的方程为3x﹣4y+15=0,故答案为:x=﹣3,3x﹣4y+15=0.点评: 本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,体现了转化、分类讨论的数学思想,属于基础题.8.(3分)若直线y=x+b与曲线恰有一个公共点,则实数b的取值范围为(﹣1,1]∪{﹣}.考点: 直线与圆的位置关系.专题: 直线与圆.分析: 曲线 表示以原点O(0,0)为圆心、半径等于1的半圆,数形结合求得当直线y=x+b与曲线恰有一个公共点,则实数b的取值范围.解答: 解:曲线 即 x2+y2=1 (x≥0),表示以原点O(0,0)为圆心、半径等于1的半圆(位于y轴及y轴右侧的部分),如图:当直线经过点A(0,﹣1)时,求得b=﹣1;当直线经过点C(0,1)时,求得b=1;当直线和圆相切时,由圆心到直线的距离等于半径可得 =1,求得b=(舍去),或 b=﹣,数形结合可得当直线y=x+b与曲线恰有一个公共点,则实数b的取值范围为(﹣1,1]∪{﹣},故答案为:(﹣1,1]∪{﹣}.点评: 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,体现了转化、数形结合的数学思想,属于基础题.9.(3分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y=2的距离为1,则半径r的取值范围是(4,6).考点: 直线与圆的位置关系.专题: 直线与圆.分析: 先利用点到直线的距离公式求出圆心到直线的距离,由题意得|5﹣r|<1,解此不等式求得半径r的取值范围.解答: 解:∵圆心P(3,﹣5)到直线4x﹣3y=2的距离等于=5,由|5﹣r|<1,解得:4<r<6,则半径r的范围为(4,6).故答案为:(4,6)点评: 本题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式的应用,以及绝对值不等式的解法,列出关于r的不等式是解本题的关键.10.(3分)光线沿(y≥0)被x轴反射后,与以A(2,2)为圆心的圆相切,则该圆的方程为(x﹣2)2+(y﹣2)2=1.考点: 直线与圆的位置关系;与直线关于点、直线对称的直线方程.专题: 计算题.分析: 令入射光线的解析式,求出x的值为﹣2﹣,由物理知识可得反射角等于入射角,可得反射后的光线与入射光线关于直线x=﹣2﹣对称,根据入射光线的方程,求出反射线的解析式,再由反射后与圆相切,利用点到直线的距离公式求出圆心A到反射线的距离,即为圆的半径,由圆心和半径写出圆的标准方程即可.解答: 解:直线x+2y+2+=0中,令y=0,解得x=﹣2﹣,则直线x+2y+2+=0关于直线x=﹣2﹣对称的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.