好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

最新北师大版九年级上相似三角形(知识点+练习例题+答案).doc

12页
  • 卖家[上传人]:汽***
  • 文档编号:525557030
  • 上传时间:2023-11-13
  • 文档格式:DOC
  • 文档大小:393.50KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精品文档】如有侵权,请联系网站删除,仅供学习与交流最新北师大版九年级上相似三角形(知识点+练习例题+答案)学生姓名 授课教师学科九年级数学教材版本上教课题名称相似三角形课时进度总第( )课时授课时间7月28日教学目标掌握相似三角形的概念、性质及判定方法,能够灵活应用相似三角形的性质和判定方法方法解决实际问题重点难点重点:相似三角形的概念、判定定理和相似三角形的性质难点:如何根据问题的结论,在较复杂的图形中找到所要证明的相似三角形.同步教学内容及授课步骤知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似简述为:两角对应相等,两三角形相似4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似简述为:两边对应成比例且夹角相等,两三角形相似5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

      简述为:三边对应成比例,两三角形相似6)判定直角三角形相似的方法:①以上各种判定均适用②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项每一条直角边是这条直角边在斜边上的射影和斜边的比例中项   如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:   (1)(AD)2=BD·DC,   (2)(AB)2=BD·BC ,   (3)(AC)2=CD·BC   注:由上述射影定理还可以证明勾股定理即 (AB)2+(AC)2=(BC)2典型例题:例1 如图,已知等腰△ABC中,AB=AC,AD⊥BC于D,CG‖AB,BG分别交AD,AC于E、 F,求证:BE2=EF·EG证明:如图,连结EC,∵AB=AC,AD⊥BC,∴∠ABC=∠ACB,AD垂直平分BC∴BE=EC,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG∥AB,∴∠G=∠3,∴∠4=∠G又∵∠CEG=∠CEF,∴△CEF∽△GEC,∴=∴EC2=EG· EF,故EB2=EF·EG【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC,把原来处在同一条直线上的三条线段BE,EF,EC转换到相似三角形的基本图形中是证明本题的关键。

      例2 已知:如图,AD是Rt△ABC斜BC上的高,E是AC的中点,ED与AB的延长线相交于F,求证:= 证法一:如图,在Rt△ABC中,∵∠BAC=Rt∠,AD⊥BC,∴∠3=∠C,又E是Rt△ADC的斜边AC上的中点,∴ED=AC=EC,∴∠2=∠C,又∠1=∠2,∴∠1=∠3,∴∠DFB=∠AFD,∴△DFB∽△AFD,∴= (1)又AD是Rt△ABC的斜边BC上的高,∴Rt△ABD∽Rt△CAD,∴= (2)由(1)(2)两式得=,故=证法二:过点A作AG∥EF交CB延长线于点G,则= (1)∵E是AC的中点,ED∥AC,∴D是GC的中点,又AD⊥GC,∴AD是线段GC的垂直平分线,∴AG=AC (2)由(1)(2)两式得:=,证毕 【解题技巧点拨】本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“”过渡,使问题得证,证法二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽ ∽ 。

      例2、已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD例3:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论二、如何应用相似三角形证明比例式和乘积式例5、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE例6:已知:如图,在△ABC中,∠BAC=900,M是BC的中点,DM⊥BC于点E,交BA的延长线于点D求证:(1)MA2=MDME;(2)例7:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB三、如何用相似三角形证明两角相等、两线平行和线段相等例8:已知:如图E、F分别是正方形ABCD的边AB和AD上的点,且求证:∠AEF=∠FBD例9、在平行四边形ABCD内,AR、BR、CP、DP各为四角的平分线, 求证:SQ∥AB,RP∥BC例10、已知A、C、E和B、F、D分别是∠O的两边上的点,且AB∥ED,BC∥FE,求证:AF∥CD例11、直角三角形ABC中,∠ACB=90°,BCDE是正方形,AE交BC于F,FG∥AC交AB于G,求证:FC=FG例12、Rt△ABC锐角C的平分线交AB于E,交斜边上的高AD于O,过O引BC的平行线交AB于F,求证:AE=BF课后作业学生姓名所属年级九年级学科数学任课教师作业时限90分钟布置时间月 日 一、填空题1.已知:在△ABC中,P是AB上一点,连结 CP,当满足条件∠ACP= 或∠APC= 或 AC2= 时,△ACP∽△ABC.2.两个相似三角形周长之比为4∶9,面积之和为291,则面积分别是 。

      3.如图,DEFG是Rt△ABC的内接正方形,若CF=8,DG=4,则BE= 4.如图,直角梯形 ABCD中,AD‖BC,AD⊥CD,AC⊥AB,已知AD=4,BC=9,则 AC= 5.△ABC中,AB=15,AC=9,点D是AC上的点,且AD=3,E在AB上,△ADE与△ABC相似,则AE的长等于 6.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为 7.△ABC中,AB=AC,∠A=36°,BC=1,BD平分∠ABC交于D,则BD= ,AD= ,设AB=x,则关于x的方程是 .8.如图,已知D是等边△ABC的BC边上一点,把△ABC向下折叠,折痕为MN,使点A落在点D处,若BD∶DC=2∶3,则AM∶MN=  二、选择题9.如图,在正△ABC中,D、E分别在AC、AB上,且=,AE=BE,则有()A.△AED∽△BED B.△AED∽△CBDC.△AED∽△ABD D.△BAD∽△BCD10.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为( )A.1 B. C.2 D.11.如图,□ABCD中,G是 BC延长线上一点,AG与 BD交于点E,与DC交于点F,则图中相似三角形共有( )A.3对 B.4对 C.5对 D.6对12. P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )A.1条 B.2条 C.3条 D.4条13.如图,在直角梯形 ABCD中,AB=7,AD=2,BC=3,若在 AB上取一点P,使以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,这样的P点有( )A.1个 B.2个 C.3个 D.4个 三、解答下列各题14.如图,长方形ABCD中,AB=5,BC=10,点P从A点出发,沿AB作匀速运动,1分钟可以到达B点,点Q从B点出发,沿BC作匀速直线运动,1分钟可到C点,现在点P点Q同时分别从A点、B点出发,经过多少时间,线段PQ恰与线段BD垂直?  15.已知:如图,正方形DEFG内接于Rt△ABC,EF在斜边BC上,EH⊥AB于H.求证:(1)△ADG≌△HED;(2)EF2=BE·FC    (答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。

      本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC再∠1=∠2(对顶角),由AB∥DG可得∠4=∠G,所以△EGC∽△EAB例2分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得借助于计算也是一种常用的方法证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°又BD平分∠ABC,则∠DBC=36°在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°∴△ABC∽△BCD例3分析: 由已知条件∠ABD=∠CBE,∠DBC公用所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例从已知条件中可看到△CBE∽△ABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD∴△CBE∽△ABD∴=即:=△DBE和△ABC中,∠CBE=∠ABD, ∠DBC公用∴∠CBE+∠DBC=∠ABD+∠DBC∴∠DBE=∠ABC且=∴△DBE∽△ABC例4分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。

      3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA解:设AB=a,则BE=EF=FC=3a,由勾股定理可求得AE=, 在△EAF与△ECA中,∠AEF为公共角,且所以△EAF∽△ECA例5 分析:证明乘积式通常是将乘积式变形为比例式及DF:FE=BC:AC,再利用相似三角形或平行线性质进行证明:。

      点击阅读更多内容
      相关文档
      【全国硕士研究生入学统一考试政治】2020年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2015年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2010年考研政治真题.docx 【全国硕士研究生入学统一考试政治】1996年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2001年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2016年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2000年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2007年考研政治真题.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2004年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2003年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2019年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2009年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2001年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2021年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2014年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2018年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2008年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2011年考研政治真题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.