
二次根式的五重点三难点突破(共10页).doc
10页精选优质文档-----倾情为你奉上二次根式的“五重点”“三难点”详解一、 五大重点一一攻克1. 二次根式的概念:重点注意被开方数是非负数例1判断下列式子哪些是二次根式. (1) (2); (3); (4); (5)剖析:判断一个带根号的式子是否为二次根式应从二次根式的概念入手,先看根指数是否为2,被开方数整体是否为非负数.解:(1)∵ 被开方数-13是负数,∴不是二次根式 (2)∵ 根指数是3 , ∴不是二次根式 (3)∵被开方数9〉0 ∴是二次根式4) ∵ 可取正数、负数、0; ∴可取正数、负数、0 即当时,是二次根式;当时,不是二次根式 (5)∵ , ∴,即当时,是二次根式;当时,不是二次根式2.二次根式的两个重要性质的理解和运用(1)()2=a (a≥0);(2) ;例2 化简(1) (2) 剖析: ()2=a (a≥0)的运用主要看被开方数整体是否为非负数1) 中无论取何实数恒为正数,故=;运用 要特别关注的正负性2)中由得,所以==2=3.最简二次根式的概念的运用例3 在二次根式,中,最简二次根式有( )个 A. 1 B. 2 C. 3 D. 4剖析:判断一个二次根式是否为最简二次根式应抓住以下两个特点(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.例3中满足以上两个特点,故都是最简二次根式;而中被开方数分别含有能开得尽方的因数9和4,故都不是最简二次根式;中被开方数含分母3,故不是最简二次根式。
故选B4.运用二次根式乘除法法则计算或化简例4 化简:解:原式=例5计算: 解:原式= = 点拨: 运用二次根式乘除法法则进行乘除混合运算时,一要注意运算顺序,二要注意整体观察被开方数之间的关系,合理搭配,达到简化运算的效果5. 二次根式加减法法则的运用例6 计算解:原式==点拨:运用二次根式加减法则计算的关键是先把各二次根式化成最简二次根式,再合并同类二次根式二、三大难点各个击破1.二次根式的双重非负性及两个重要性质的条件的使用例1 已知求的取值范围?剖析:二次根式中的取值范围为,从而解:∵ ∴而即又∴的取值范围是例2 数a、b在数轴上的位置如图所示, 化简:.由图可知:;∴=2.逆用二次根式乘除法法则进行化简例3 计算或化简(1); (2)()解:(1)=(2)=().3.灵活运用二次根式加减乘除混合运算化简求值例4 已知求的值.解:由题可知=点拨:观察发现已知条件是一对相反数,而所求式子是这两个数的平方和与这两个数的乘积的差,故可由已知转变条件,运用完全平方式简化求值.栏目名:错题集解二次根式常见错误分类解析一、审题不清导致错误例1 的平方根是______ . 错解: 的平方根是4. 诊断:错把的平方根当成16的平方根。
正解:二、化简不彻底,结果不是最简二次根式例2 化简. 错解:原式=诊断:化简二次根式的结果一定是最简二次根式,正解:原式=或原式=三、分母有理化时,所乘有理化因式可能为0而导致错误例3化简 错解:.诊断:题中只隐含即>0,>0,所以与有可能相等 故应分两种情况正解:(1)当时,原式=0; (2)当时, 四、漏掉括号导致错误例4 分母有理化 错解:原式=.诊断:当一个式子与一个多项式相乘时,多项式应注意添括号.正解: 原式=五、忽视中的隐含条件≥0 例5 化简.错解:原式===诊断:忽略了 正解:由原式=六、在化简时,忽视字母的具体取值而导致错误例6当时,求的值错解:原式==.诊断:由,得,则<0,.正解: 原式==七、连用“=”号出错例7 已知中,两条直角边长分别为求斜边错解:由勾股定理,=诊断:运算法则变了,还连用“=”号出错正解:由勾股定理, 八、不管字母正负;滥用积(商)的算术平方根性质而出错例8 已知求错解:原式.诊断:由>0,知同号;又<0,<0.正解:原式=九、运算顺序不清导致错误例9 计算 错解:原式=1=诊断:忘记乘除是同一级运算,应按从左到右依次计算。
正解:原式=例10计算:. 错解: .诊断:,实数的加减乘除四则运算法则对于二次根式的运算仍然适用,应先算乘除,再算加减正解:十、乱用运算律导致错误例11 计算. 错解:原式=+=诊断:除法没有分配律,本题应分母有理化正解:=十一、在去括号时出错例12 计算:错解:.诊断:去括号法则对二次根式仍然适用,括号前面是负号,去括号时括号内的每一项都改变符号正解:十二、用公式时出错例13 计算:错解:诊断:运用完全平方公式丢项出错栏目名:期末练兵 综合练习题一、选择题(每小题3分,共30分)1.下列各式正确的是( ) A. B. C.. D. 2.下列各式中属于最简二次根式的是( ) A. B. C. D. 3.在下列各组根式中,是同类二次根式的是( ) A.和 B.和 C.和 D.和.4. 下列根式:①;②;③;④;⑤;⑥,其中最简二次根式是 ( ) A.①③④⑥ B.③④⑥ C.③④⑤⑥ D.②③⑥5. 化简的结果是( )A. B. C. D. 6.的平方根是 ( ) A.13 B. C.13 D. 7.若把的根号外的适当变形后移入根号内,得( )A. B. C. D. 8.使等式 成立的条件是 ( )毛 A. B.>5 C.≥3 D.≥3且≠59.若为任意实数,则下列各式的值一定为正数的是 ( ) A.│+5│ B. C. D. 10.已知-2+b=0 (>0,b>0),则等于 ( ) A. B.; C. D.二、填空题:(每空2分,共26分) 1.的算术平方根是_____. 2. 的相反数的平方根是________. 3. 的绝对值是__________,它的倒数__________. 4. 用“<”号把连接起来:_________________________.5.当________时,有意义,若有意义,则_______.6.当m > n时,=___________; . 7. 如图,化简= . 8. 某精密仪器的一个零件上有一个矩形的孔,其面积是,它的长为,则这个孔的宽为________. 9.当1≤<3时,=________. 10.若,则=_______.三、解答题:(共64分)1.计算、化简: (每小题5分共25分)(1); (2) ; (3) ; (4) (5) (>0,b>0);2. 已知 =,求的值.( 6分)3. 解不等式和方程 (每小题4分共8分)(1) (2)4. 自由下落物体的高度米与下落的时间的关系为。
有一学生不慎把一个铁球从19.6米高的楼上自由下落,正好另一学生站在与下落的铁球同一直线的地面上,若在铁球下落的同时楼上的学生惊叫一声,问这时楼下的学生听到惊叫声后能躲开吗?(已知声速为340米/秒;米/秒2.)(本题5分)5. (本题6分)若一个直角三角形的两直角边长分别为,求此三角形的周长与面积.6、(本题8分)(1)先观察下列分母有理化: 从计算结果中找出规律,再利用这一规律计算下列式子的值:(2)你能由(1)题得到启发,发现 =的规律,试确定的值在什么范围内. 7.试在图(1)的空格中填上适当的数,使图中每一行、每一列、 每条对角线上的三个数的和均为0;你能在图(2)的空格中填上适当的数,使每一行、每一列、每条对角线上的三个数的积为1吗?试一试本题6分)专心---专注---专业。
