
湘教版九年级上册数学教案:第2章 2.2 一元二次方程的解法.doc
4页2.2 一元二次方程的解法课题 2.2 一元二次方程的解法教学目标知识与技能:让学生掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程过程与方法:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性.2.培养学生快速而准确的计算能力.情感态度与价值观:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识.2.通过求根公式的推导,渗透分类的思想重点求根公式的推导及用公式法解一元二次方程难点对求根公式推导过程中依据的理论的深刻理解.教学方法课型[来源:gkstk.Com]教具教学过程: 一、创设情境、导入新课 通过作业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方程的解的正确求出带来困难.能不能寻求一个快速而准确地求出方程的解是亟待解决的问题 二、合作交流、解读探究 如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根 x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= ∵b2-4ac≥0且4a2>0 ∴≥0 直接开平方,得:x+=± 即x= ∴x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0 x= ∴x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-4×3×(-2)=49>0 x= x1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-4×3×9=13>0 ∴x= ∴x1=,x2= (3)a=4,b=-3,c=1[来源:学优高考网gkstk] b2-4ac=(-3)2-4×4×1=-7<0 因为在实数范围内,负数不能开平方,所以方程无实数根.三、巩固练习 教材P37 练习(1)、(2)(3)、(4) 四、应用拓展 例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程. (2)若使方程为一元二次方程m是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足:①或②或③ 解:(1)存在.根据题意,得:m2+1=2 m2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-. (2)存在.根据题意,得:①m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m2+1=0,m不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-. 五、归纳小结 本节课应掌握:[来源:学优高考网] (1)求根公式的概念及其推导过程; (2)公式法的概念;[来源:gkstk.Com] (3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况. 六、布置作业 教材P42 4题.[来源:学优高考网gkstk]个案修改。
