
模型参考自适应控制.doc
23页(2004年教案) 辨识与自适应 第九章 5第九章 模型参考自适应控制(Model Reference Adaptive Control)简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等)§9—1MRAC的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC力求使被控系统的动态响应与模型的响应相一致与STR不同之处是MRAC没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点设参考模型的方程为 式(9-1-1) 式(9-1-2)被控系统的方程为 式(9-1-3) 式(9-1-4)两者动态响应的比较结果称为广义误差,定义输出广义误差为e = ym – ys 式(9-1-5);状态广义误差为e = X m – X s 式(9-1-6)。
自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J达到最小J可有不同的定义,例如单输出系统的 式 (9-1-7)或多输出系统的 式(9-1-8)MRAC的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法§9—2局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法 这里要用到非线性规划最优化算法中的一种最简单的方法——梯度法(Gradient Method)1. 梯度法考虑一元函数f(x),当: ¶ f (x)/ ¶x = 0 ,且¶ f 2 (x) / ¶x 2 > 0 时f(x) 存在极小值问题是怎样调整x使得f (x) 能达到极小值 ?x有两个调整方向:当¶ f (x)/ ¶x > 0时应减小x ;当¶ f (x)/ ¶x < 0时应增加x 两者合并表示为: 式(9-2-1)l 为步长系数(l > 0 )。
把函数f(x) 在x方向的偏导数称为梯度上式含义为:按照梯度的负方向调整自变量x 该结论可推广到多元函数求极值的情况2. 具有一个时变参数——可调增益的MRAC设计(MIT方案)1958年由麻省理工学院提出参考模型传函为式中:q(s) = b1sn-1+…+ bn ; p(s) = sn +a1sn-1+…+ an 广义误差为e = ym – ys性能指标为: 式(9-1-7)系统的可调增益为Kc,目标是设计出随着e而调整Kc的规律,以使J达到最小J 对Kc的梯度为由梯度法有:将上式两边对t求导数,得到 式(9-2-2)广义误差对输入信号的传递函数为:自适应回路开环情况下系统传函为引入微分算子:D = d/dt 、 D2 = d2 / dt2 …,由上式得到微分方程: P(D) ×e (t) = ( Km - Kc×Ks ) q(D) × r ( t )两端对Kc求偏导数得到 式(9-2-3)由模型的微分方程:p (D) ym (t) = Km q(D) r(t) 得到 代入式(9-2-3),得出: 代入式(9-2-2),得出 式(9-2-4)其中:B = 2 l Ks / Km , 当Ks与Km同号时B为正值常系数,即自适应回路的积分时间常数。
实现的方案如下图,自适应回路由乘法器与积分器组成该方案能够使得J为最小,但是不能确保自适应回路是稳定的需要通过调整B的大小,使得系统稳定且自适应跟踪速度也比较快 MIT方案应用举例:二阶电传动调速系统的模型参考自适应控制马润津等“可控硅电传动模型参考自适应控制“自动化学报1979第4期 实验结构图§9—3基于李雅普诺夫第二方法稳定性理论的MRAC设计方法1. 关于李雅普诺夫( Liaupunov) 稳定性的第二方法是关于动态系统(无论线性或者非线性)稳定性分析的理论,特点是不需要求微分方程的解,而是直接根据某个特定的函数(李雅普诺夫函数)对时间的变化率来判断其稳定性,因此又称直接法它特别适用于非线性、线性时变或多变量系统的稳定性分析a) 李雅普诺夫意义下的稳定性对于以状态方程 且f(0,t)=0 "t 式(9-3-1)描述的动态系统,如果存在一个对时间连续可微的纯量函数V( X, t ) ,满足以下条件:(1) V( X, t ) 正定; (2)V 沿方程式(9-3-1)解的轨迹对时间的一阶偏导数V 存在,且为负半定(或负定),则称V( X, t ) 为李雅普诺夫函数,且系统式(8-3-1)对于状态空间的坐标原点X=0 为李雅普诺夫意义下的稳定(或渐进稳定)的。
李雅普诺夫函数的几何意义可以理解为:V(X)表示状态空间原点到状态X的距离的量度,如果其原点到瞬时状态X(t)间的距离随着t的增长而不断减小则系统稳定,V(t) 对时间的一阶偏导数相当于X(t) 接近原点的速度李雅普诺夫函数的物理意义可以理解为:一个振动着的力学系统,如果振动的蓄能不断衰减,则随着时间增长系统将稳定于平衡状态,而李雅普诺夫函数实质上可视为一个虚拟的能量函数b)用李雅普诺夫第二方法分析线性定长系统的稳定性线性定长系统 式(9-3-2)可取一个正定的纯量函数 式(9-3-3)其中P为正定的实对称矩阵V 沿式(9-3-2)的轨线的一阶导数为:其中Q与P满足线性代数方程(称李雅普诺夫方程) 式(9-3-4)如果Q是正定矩阵,则V(X)的一阶导数是负定的,V(X) 是李雅普诺夫函数,系统式(9-3-2)对于平衡状态X=0 是渐进稳定的2.应用李雅普诺夫第二方法设计可调增益的MRAC参考模型状态方程 式(9-3-5)其中:系统状态方程 式(9-3-6)定义广义误差令 E = Km - Ks , 由式(9-3-5)和式(9-3-6)得出广义状态误差方程 式(9-3-7) 其中 B = [ 0, E ]T 为了保证MRAC系统稳定,要找到一个李雅普诺夫函数V(e) 。
试取纯量函数V(e) = eT P e + l E 2 式(9-3-8)其中P 为正定实对称阵,显然V(e) 也是正定的求V(e) 沿式(9-3-7)的轨线对t 求导数 将式(9-3-7)代入上式,有dV/dt = [eT A + B T r ] P e + eT P [ A e + B r ] +2 l E E= eT A T P e + eT P A e + B T r P e + eT P B r + 2 l E E= eT (A T P + P A ) e + 2 eT P B r + 2 l E E 式(9-3-9)为保证dV/dt 负定,须使二次型 eT (A T P + P A ) e 负定,且后两项之和为零由于A为稳定矩阵,方阵(A T P + P A ) 肯定是负定的由式(9-3-9)的后两项之和为零的条件,得出: 式(9-3-10)由于所以由E = Km - Ks ( t ) , 得到自适应控制律:其中: C0 = P12 / l , C1 = P2 / l , 或写成:式(9-3-11)按照上式实施控制,能够保证V(e) 是正定而dV/dt 是负定的,即V(e) 是李雅普诺夫函数,自适应系统对于 e = 0 的平衡状态是大范围渐进稳定的,也就是当t ® ¥ 时 e ® 0 。
系统结构如下图:3. 应用举例:直流电传动自适应控制 可控硅直流调速系统结构图,设 s = t1 + t2,可简化为 开环总增益 KS = K1 K2 / C e ×ti 为时变且可调参考模型状态方程为 式(9-3-12)被控系统状态方程为 式(9-3-13)可见 AS和BS中仅 a12 = K S / s 一个元素是时变的为了设计出比较简单的自适应线路,选择正半定的Q阵 由李雅普诺夫方程 式(9-3-4)解出:由于s > 0,所以P阵是正定的,将P代入AS的第aij元素的自适应调整律得到比例——积分型的自适应律而a12 = K s (t) / s,则有其中的XS2 虽然不能从系统中直接测量,但是可由以下关系式很容易重构,得出XS2 的估计量下图示出了可控硅电传动MRAC实验系统的简化原理图:实验结果如下图,被控系统开环增益K0=3.4K m ,加入自适应控制后,能够自动调整K S使得系统的动态响应与参考模型的一致§9—4基于超稳定理论的MRAC设计方法 超稳定理论最初由波波夫在研究非线性系统绝对稳定性时提出的,该理论对研究非线性时变反馈的非线性系统的稳定性很有用途,特别是I.D.Landau等将超稳定理论用于MRAC系统的设计,取得良好效果。
本节仅就其基本概念和主要结果作一些简要介绍一、关于超稳定性理论的基本概念1. 直观概念先从简单的直观概念出发,体会稳定性的含义讨论一个由线性定常的正向通道和非线性时变的反馈通道组成的单输入——单输出闭环系统(见下图) u(t) 线性定常 y(t) 正向通道 非线性时变 反馈通道如果该闭环系统能够满足以下两个条件:a) 线性定常的正向通道动态性能等价于一个无源网络;b) 非线性反馈通道为正向通道提供的总能量(系统储能)是有限的,则该系统一定是稳定的由网络理论,以上的条件a) 等价于传递函数Z (s) = y(s)/u(s。
