
江苏中职数学学业水平测试指导用书第五章三角函数(共11页).doc
11页第五章 三角函数§5.1 角的概念推广【知识要点】1.角的概念的推广(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.射线的端点称为角的顶点,射线旋转的开始位置和终止位置分别称为角的始边和终边.(2)正角、负角和零角一条射线绕着端点按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有做任何旋转,那么也把它看成一个角,叫做零角.2.象限角和非象限角为了方便,经常在平面直角坐标系中研究角.让角的顶点与坐标原点重合,角的始边与x轴正半轴重合,规定:角的终边在第几象限,就称这个角是第几象限角角的终边在坐标轴上时,这个角不属于任何象限,称为非象限角3.终边相同的角所有与角α终边相同的角(连同角α在内),可组成一个集合{β| β =α + k×360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与周角的整数倍的和的形式基础训练】1.一条射线绕着端点按 方向旋转形成的角叫做正角;按 方向旋转形成的角叫做负角;如果一条射线没有做任何旋转,那么把它看成 角2.30°角是第 象限角;120°角是第 象限角;315°角是第 象限角;-60°角是第 象限角。
3.0°角的终边在 ;90°角的终边在 ;180°角的终边在 ;270°角的终边在 ;-90°角的终边在 4.与90°终边相同的角的集合是 ;与820°终边相同的角的集合是 ;与-496°终边相同的角的集合是 能力训练】1.下列命题中正确的是( )A.终边在y轴正半轴上的角是直角 B.终边相同的角一定相等C.第四象限角一定是负角 D.锐角一定是第一象限角2.下列角中与130°角终边相同的角是( )A.1000° B.-630° C.-950° D.-150°§5.2 弧度制【知识要点】1.角度制和弧度制用角度作单位来度量角的制度叫做角度制;用弧度作单位来度量角的制度叫做弧度制。
2.1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为03. 弧度与角度的换算关系:180°=π rad ; 1°=rad ≈0.01745 rad ; 1 rad =≈57.3°4. 弧长公式及扇形面积公式:(1)弧长公式: l=|α| r(2)扇形面积公式:【基础训练】1.角度与弧度的互化(1) 18°= ;(2) -67.5°= ;(3) ,(4) .2.是第 象限角;是第 象限角;是第 象限角;是第 象限角3.0的终边在 ;的终边在 ;π的终边在 ;的终边在 4.与终边相同的角的集合是 5.(1)已知扇形的半径为10cm,圆心角为,则该扇形的弧长是 cm,面积是 cm22)已知扇形的半径为6cm,圆心角为30°,则该扇形的弧长是 cm,面积是 cm2。
能力训练】1.下列角中为第四象限角的是( )A.490° B. C. D.630°2.下列各角中与角终边相同角的是( )A. B. C. D.§5.3 任意角的三角函数【知识要点】1.任意角的三角函数的定义 设角α是任意角,在角α的终边上任取除原点以外的任一点P(x,y),点P到原点的距离为r,r =|OP|=>0则比值叫做α的正弦,记作sinα,即sinα=;比值叫做α的余弦,记作cosα,即cosα=;比值叫做α的正切,记作tanα,即tanα=正弦函数和余弦函数的定义域都是R,正切函数的定义域是{α| α≠ + k×π,k∈Z}2.三角函数值在各象限内的符号如图:yxsinx﹣﹣﹢﹢yxcosx﹢﹣﹣﹢yxtanx﹣﹢﹣﹢ 3.利用计算器求三角函数值操作步骤为:按D/R键,设定角的计算模式为角度(D)或弧度(R)→按sin键(cos键、tan键)→输入相应的角度值或弧度值→按=键,显示三角函数值。
基础训练】1.已知角α的终边过下列点,求sinα ,cosα ,tanα 1)P1(3,4); (2)P2(-1,1)(3)P3(-5,-12) (4)P4(,-1)2.求下列各角的正弦值、余弦值、正切值1)60° (2)π3.确定三角函数值的符号(用“<”或“>”填空)1)sin70° 0; (2) 0; (3)tan(-46°) 04.已知sinα >0 且cosα <0 ,则角α的是第 象限角; 已知sinα < 0且tanα >0 ,则角α的是第 象限角能力训练】1.已知角α为第四象限角,且终边过点P(3,y),若|OP|=5,求sinα ,cosα ,tanα 2.已知sinα cosα >0 ,则角α的是第 象限角; 已知sinα tanα <0 ,则角α的是第 象限角 §5.4 同角三角函数的基本关系【知识要点】同角三角函数的基本关系(1)sin2α +cos2α=1 (2)=tanα【基础训练】1.化简:(1)sin2 70°+cos270°= ;(2)sin23α +cos23α= ;(3) ;(4)= ;(5)cos60°tan60°= 。
2.(1)已知sinα=0.6,α是第二象限角,求cosα,tanα2)已知cosα=-0.6,α是第三象限角,求sinα,tanα能力训练】1.下列等式中,正确的是( )A.sin2 40°+cos250°=1 B. sinα tanα=cosαC.sin4α +cos4α=1 D.cosα tanα=sinα2.已知sinα=,求cosα,tanα3.已知tanα=,α是第三象限角,求sinα和cosα§5.5 三角函数的诱导公式【知识要点】三角函数的诱导公式(k∈Z)公式1 sin(α+2kπ) = sinα cos(α+2kπ)= cosα tan(α+2kπ)= tanα公式2 sin(-α) = -sinα cos(-α)= cosα tan(-α)= -tanα公式3 sin(π-α) = sinα cos(π-α)= -cosα tan(π-α)= -tanα公式4 sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα【基础训练】1.化简(1)sin(α+2π)= ; (2)cos(α+180°) = ;(3)sin(180°-α) = ; (4)tan(-α) = ;(5)cos(α+π) = ; (6)tan(π-α) = ;2.下列结论中,错误的是( )。
A.cos(-α) = -cosα B.sin(π-α) = sinα C.tan(π+α) = tanα D.sin(α+180°) = - sinα3. 求三角函数值(1)sin(-30°) = (2)cos150°= (3)tan210°= (4)sin405°= (5)cos= (6)tan= 【能力训练】化简:(1)sin(-210°) tan240°+ cos(-210°); (2)§5.6 正弦函数的图象与性质【知识要点】Oxy2p p····· 1-11.正弦函数的图象(1)正弦函数在[0,2π]上的图象(如右图)有五个关键点:(0,0),(,1),(π,0),(,-1),(2π,0)常用“五点法”作正弦函数在[0,2π]上的简图.(2)正弦函数y=sinx ,x∈R的图象称为正弦曲线.yOx-p2p3p4p5pp-3p···-2p-1·····2.正弦函数的性质(1)周期函数:对于函数y=f(x),如果存在一个不为零的常数T,当x取定义域D内的每一个值时,都有x+T∈D,并且等式f(x+T) = f(x)成立,那么函数y= f(x)叫做周期函数,常数T叫做这个函数的周期(2)正弦函数的图象和性质函 数y=sinx,x∈R图 象yOx-p2p3p4p5pp-3p···-2p-1·····-4p-5p性质定义域R值 域[-1 , 1]最 值当x =+2kπ (k∈Z)时,ymax =1;当x =+2kπ (k∈Z)时,ymin =-1周期性y=sinx,x∈R是周期函数,其周期T=2π奇偶性y=sinx,x∈R是奇函数单调性在[-+2kπ, +2kπ] (k∈Z)上是增函数;在[+2kπ, +2kπ] (k∈。
