好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

北师大版数学《6.1 频率与概率》教案1(九年级上).doc

21页
  • 卖家[上传人]:h****0
  • 文档编号:285759159
  • 上传时间:2022-04-30
  • 文档格式:DOC
  • 文档大小:317KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第六章 频率与概率课  题§6.1.1 频率与概率(一)第1课时共3课时教  学目  标教学知识点:通过实验,理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.能力训练要求:经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.情感与价值观要求:1.积极参与数学活动,通过实验提高学生学习数学的兴趣;2.发展学生的辩证思维能力.重  点1.通过实验,理解当实验次数较大时.实验频率稳定于理论概率.并据此估计某一事件发生的概率.2.在活动中发展学生的合作交流意识和能力.难  点辩证地理解当实验次数较大时,实验频率稳定于理沦概率.教学过程:一、创设问题情境,引入新课我们在七年级时,曾用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币,如果正面朝上,小丽去;如果反面朝上,小明去.这样决定对双方公平吗?任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.的我们也可以通过实验活动.估计较复杂事件的概率.二、分组实验,进一步理解当实验次数较大时,实验频率稳定于理论概率.1.活动一:通过摸牌活动,探索出“实验次数很大时,实验的频率渐趋稳定”这一规律.分组实验,全班合作交流.准备两组相同的牌,每组两张.两张牌的牌,面数字分别是1和2.从每组牌中各摸出一张,称为一次实验.(1)估计一次实验中.两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写表格:(3)根据上表,制作相应的频数分布直方图.(4)根据频数分布直方图.估计哪种情况的频率最大?(5)计算两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率.2.议一议在上面的实验中,你发现了什么?如果继续增加实验次数呢?与其他小组交流所绘制的图表和发现的结论.也就是说,同学们从实验中都能体会到实验次数较大时,实验频率比较稳定.请问同学们估计一下,当实验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?3.做—做你能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?4.想一想我们在前面估算出了当实验次数很大时,两张牌的牌面数字和等于3的频率约为.接着又用树状图计算出了两张牌的牌面数字和等于3的概率也为.比较两者之间的关系,你可以发现什么呢?同学们可相互交流意见.由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率.三、随堂练习活动二:利用学生原有的实验数据统计两张牌的牌面数字和为2的频率,进—步体会当实验次数很大时,频率的稳定性及其与概率之间的关系.四、课时小结本节课通过实验、统计等活动,进一步理解“当实验次数很大时,实验频率稳定于理论概率”这一重要的概率思想.五、课后作业习题6.1板书设计§6.1.1 频率与概率(一)1.活动一2.议一议3.做—做4.想一想5.活动二教学反思课  题§6.1.2 频率与概率(二)第2课时共3课时教  学目  标教学知识点:学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重  点用树状图和列表法计算涉及两步实验的随机事件发生的概率.难  点正确地用列表法计算涉及两步实验的随机事件发生的概率.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏.二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为,即.小颖的做法:通过列下表得到牌面数字和等于4的概率为.牌面数字的可能值23456相应的概率小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为.第一张牌的牌面数字第二张牌的牌面数1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用列表的方法求出将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?看一个常见的用两个转盘“配紫色”的游戏.游戏者同时转动如下图中的两个转盘进行“配紫色”游戏,求游戏者获胜的概率.三、随堂练习(多媒体演示)掷两枚骰子.它们的点数和可能有哪些值?用列表的方法求出点数和为6的概率.四、课时小结本节课我们学习了用树状图和列表法求理论概率,进一步发展了同学们合作交流的意识和良好的反思习惯.五、课后作业习题6.2 第1题板书设计§6.1.2 频率与概率(二)如果有两组牌,它们的牌面数字分别为1,2,3,那么从每组牌中各摸出一组牌,两张牌牌面数字和为4的概率是多少?做一做:(1)掷两枚均匀的硬币.(2)“配紫色”游戏.教学反思课  题§6.1.3 频率与概率(三)第3课时共3课时教  学目  标教学知识点:进一步经历用树状图、列表法计算两步随机实验的概率.能力训练要求:经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.情感与价值观要求:1.鼓励学生思维的多样性,发展学生的创新意识.2.鼓励学生积极参与数学活动,进一步提高学习数学的信心.重  点进一步经历用树状图、列表法计算随机事件发生的概率.难  点正确地利用列表法计算随机事件发生的概率.教学过程:一、创设情境,引入新课上一节,我们用列表法求出掷两次骰子,点数和为6的概率,下面请同学们利用列大法.求出掷两枚骰子:(1)“点数和为12点”的概率;(2)“点数和至少是9点”的概率;(3)“两颗骰子点数相同”的慨率;(4)“两颗骰子的点数都是偶数”的概率;(5)“点数和为1点”的概率;(6)“点数和小于13点”的概率.掷两枚骰子,所有等可能的情况列表如下:第二点点数第一次点数1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)根据上表可知,共有36个等可能的基本事件,(1)其是点数和为12点的有(6.6)一种. 在七年级学习过随机事件,必然事件,不可能事件,由上面的计算更进一步验证上面:随机事件的概率是大于零且小于1的;必然事件的概率为1;不可能事件的概率为0.二、巩固、练习树状图和列表法[例题]一枚硬币和一枚骰子一起掷,求:(1)“硬币出现正面,且骰子出现6点”的概率;(2)“硬币出现正面,或骰子出现6点”的概率.骰子硬币123456正面(正,1)(正,2)(正,3)(正,4)(正,5)(正,6)反面(反,1)(反,2)(反,3)(反,4)(反,5)(反,6)共有12种等可能情况.(1)“硬币出现正面,且骰子出现6点”的概率为;(2“硬币出现正面或骰子出现6点”的概率为.三、随堂练习用如图所示的转盘进行“配紫色”游戏.四、课时小结本节课我们继续复习巩固了用树状图和列表法求随机事件的概率,进一步加深了用列表法求概率时应注意各种情况出现的可能性务必相同.五、课后作业习题6.2 第2题六、活动与探究掷三枚硬币,求:(1)“至少有一个硬币是正面”的概率;(2)“三枚硬币都是反面”的概率.板书设计§6.1.3 频率与概率(三)[例1]掷两枚均匀的骰子.求:……[例2]一枚硬币和一枚骰子一起掷.求:……教学反思课  题§6.2 投针实验第1课时共1课时教  学目  标教学知识点:能用实验的方法估计一些复杂的随机事件发生的概率.能力训练要求:经历实验、统计等活动过程,在活动中进一步发展学生的合作交流的意识和能力.情感与价值观要求:1.激发学生实事求是的科学态度.2.亲历实验,提高学生学习数学的兴趣.重  点能用实验的方法估计一些复杂的随机事件发生的概率.难  点借助大量重复实验去感悟实验频率稳定于理论概率.教学过程:一、提出质疑,引入新课上节课我们介绍了用树状图或列表格的方法计算随机事件的概率.也就是计算一些事件的概率就可以在某个试验之前,算出某个结果的概率.但这些方法有一个前提条件,是什么?看一个例子.比如掷一枚图钉,有几种结果?它们是等可能的吗?一个试验,虽然结果有有限个,但各个结果出现的可能性不相等,这时怎样求某一事件的概率呢?求这些事件发生的概率只有亲自做很多次实验了.二、讲授新课活动一:从一定高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地.你估计哪种事件发生的概率大?活动目的:利用“当实验次数较大时,实验频率稳定于理论概率”来估计某一事件发生的概率.活动方式:小组合作交流,全班汇总实验数据,交流研讨.活动工具:形状、大小完全相同的图钉.活动步骤:1.分组:每组5人.2.每组每人做20次实验,根据实验结果,填写下表的表格:实验结果钉尖着地钉帽着地频数频率3.根据上表你认为哪种情况的频率较大?4.分别汇总本小组其中两人、三人、四人、五人的实验数据,相应得到实验40次、60次、80次、100次时钉帽着地的频率,填写下表,并绘制折线统计图.实验次数20406080100钉帽着地的频数钉帽着地的频率5.汇总全班各小组其一个组.两个组、三个组、四个组……的实验数据,相应得。

      点击阅读更多内容
      相关文档
      吉林省松原市2025~2026学年度八年级上册语文课时训练26 诗词五首(含答案).docx 吉林省松原市2025~2026学年度八年级上册语文第二单元测试卷(含答案).docx 吉林省松原市2025~2026学年度八年级上册语文第六单元测试卷(含答案).docx 2025~2026学年度下学期初中学业水平考试模拟试题 九年级化学(含答案).docx 吉林市2024-2025学年度初中毕业年级第二次阶段性教学质量检测 道德与法治.历史合卷(含答题卡、答案).docx 2025~2026学年度下学期八年级期中考试物理(含答题卡、答案)(1).docx 吉林省松原市2025~2026学年度八年级上册语文第三单元测试卷(含答案).docx 2025~2026学年度下学期初中学业水平考试模拟试题题 九年级道德与法治(含答案).docx 2025~2026学年度下学期八年级期中考试道德与法治(含答题卡、答案).docx 2025~2026学年度下学期九年级第三次模拟测试 化学(含答案).docx 吉林省松原市2025~2026学年度八年级上册语文课时训练17散文两篇(含答案).docx 第四章整式的加减第一课时4.1整式1 初中数学人教版(2024)七年级上册 课时练(含答案).docx 第六章几何图形初步第八课时6.3.2角的比较与运算1初中数学人教版(2024)七年级上册 课时练(含答案).docx 初中学业水平考试模拟试题 九年级化学(含答案).docx 2025~2026学年度下学期初中学业水平考试模拟试题 九年级数学(含答案).docx 第四章整式的加减第四课时4.2整式的加法与减法2 初中数学人教版(2024)七年级上册 课时练(含答案).docx 第五章一元一次方程第十一课时5.3 实际问题与一元一次方程3 初中数学人教版(2024)七年级上册 课时练(含答案).docx 吉林省松原市2025~2026学年度八年级上册语文第四单元测试卷(含答案).docx 初中学业水平考试模拟试题 九年级英语(含答案).docx 2025~2026学年度下学期八年级期中考试英语(含答题卡、答案).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.