
人教版八年级下数学期中考试题及答案(同名11545).doc
10页八年级下册数学期中考试题一、选择题(每小题2分,共12分)1、.下列式子中,属于最简二次根式的是( )A. B. C. D. 2、以下二次根式:①;②;③;④中,与是同类二次根式的是( ). A.①和② B.②和③ C.①和④ D.③和④3、若代数式有意义,则实数的取值范围是( )A. ≠ 1B. ≥0C. >0D. ≥0且 ≠14、如图字母B所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 5、 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是 ( )A.12 B. 24 C. D. 6、如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米? A 4 B 8 C 9 D77、三角形的三边长分别为6,8,10,它的最长边上的高为( )A.6 B.4.8 C.2.4 D.8 8、.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:29、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A、5 B、25 C、7 D、1510、.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若AB=6,BC=10,则DE的值为( )11、8、菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为( ).A.15 B. C.7.5 D.12、. 如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )5题图A. B. C. D. 12题图二、填空题:(每小题3分,共24分)11.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,小虎应把梯子的底端放在距离墙________米处.13.如图3,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少 16如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)17 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= . 18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________.ECDBAB′ 三、解答题(每小题4分,共16分)19.计算:1、 2、(+)+(-)3、(2+5)(5-2) 4、(2)(-)(+);20. 如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长和四边形ABCD的面积16题图21.先化简,后计算:,其中,.22. 如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.26.如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?23. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=4cm,BC=3cm,求线段NF的长.19题图25.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。
1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长21题图27. 如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.23题图28. 如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC (1)求证;OE=OF; (2)若BC=,求AB的长29. 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25题图30. 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为_________s时,四边形ACFE是菱形;②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.26题图参考答案1. B;2.C;3.D;4C 5.D;6B 7 D 8.C;9.C;10C11 0.7 ; 12. ≤; 13 25; 14 .25°; 15. 100平方米;16. OA=OC或AD=BC或AD∥BC或AB=BC; 17. ; 18. 或3; 19 20. 解:∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.21. :原式 当,时,原式的值为。
22. 由条件可以推得FC=4,利用勾股定理可以得到EC=3cm.23. (1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;(2)解:∵四边形BFDE为为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.24. (1) ∵BD平分ÐABC,∴ÐABD=ÐCBD又∵BA=BC,BD=BD, ∴△ABD @ △CBD∴ÐADB=ÐCDB (4分) (2) ∵PM^AD,PN^CD,∴ÐPMD=ÐPND=90°。
又∵ÐADC=90°,∴四边形MPND是矩形 ∵ÐADB=ÐCDB,PM^AD,PN^CD,∴PM=PN ∴四边形MPND是正方形25.(1)略(2)26. AB=5cm,BC=13cm.所以其最短路程为18cm 27.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.28. (1)证明:∵四边形ABCD是矩形 ∴AB∥CD,∠OAE=∠OCF,∠OEA=∠OFC ∵AE=CF ∴△AEO≌△CFO(ASA) ∴OE=OF (2)连接BO ∵OE=OF,BE=BF ∴BO⊥EF且∠EBO=∠FBO ∴∠BOF=900 ∵四边形ABCD是矩形 ∴∠BCF=900 又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA ∴∠BAC=∠EOA ∴AE=OE ∵AE=CF,OE=OF ∴OF=CF 又∵BF=BF ∴△BOF≌△BCF(HL) ∴∠OBF=∠CBF ∴∠CBF=∠FBO=∠OBE ∵∠ABC=900 ∴∠OBE=300 ∴∠BEO=600 ∴∠BAC=300∴AC=2BC=,∴AB=29(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,AO=,在Rt△OAG中,OG2+OA2=AG2,x2+(4)。












