
初一数学期中考试压轴题..docx
6页初一数学期中考试压轴题. 初一数学期中考试压轴题:探索类附加题 ★★★★☆ 有理数计算、分数拆分、方程思想 解答题:有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,求这8个连续的正整数中最大数的最小值4分) 设这八个连续正整数为:n,n+1……n+7;和为8n+28 可以表示为七个连续正整数为:k,k+1……k+6;和为7k+21 所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整数 所以n=7,14,21,28…… 当n=7时,八数和为84=27+28+29,不符合题意,舍 当n=14时,八数和为140,符合题意 最大数最小值:21 ★★★★★ 倒数的定义、有理数计算、分类讨论思想 已知x,y是两个有理数,其倒数的和、差、积、商的四个结果中,有三个是相等的, (1)填空:x与y的和的倒数是; (2)说明理由。
设x,y的倒数分别为a,b(a≠0,b≠0,a+b≠a-b), 则a+b,a-b,ab,a/b中若有三个相等,ab=a/b,即b2=1,b=±1 分类如下: ①当a+b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=0.5 ②当a-b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=-0.5 所以x、y的倒数和为a+b=-0.5,或-1.5 ★★★★☆ 绝对值化简 将1,2,3,…,101这101个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中 进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____ 绝对值化简得:当a≥b时,原式=b;当a 所以50组可得50个最小的已知自然数,即1,2,3,4 (50) 1275 这50个值的和的最大值为____ 因为本质为取小运算,所以101必须和101一组,101必须和97一组,最后留下的50组结果为:1,3,5,7……101=2500★★★★☆ 有理数计算 在数1,2,3,4……11018,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分) 最小的非负数为“0”,但是11018个正数中有1019个奇数,1019个偶数,他们的和或者差结果必为奇数,因此不可能实现“0” 初一数学期中考试压轴题:探索类附加题 ★★★★☆ 有理数计算、分数拆分、方程思想 解答题:有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,求这8个连续的正整数中最大数的最小值。
4分) 设这八个连续正整数为:n,n+1……n+7;和为8n+28 可以表示为七个连续正整数为:k,k+1……k+6;和为7k+21 所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整数 所以n=7,14,21,28…… 当n=7时,八数和为84=27+28+29,不符合题意,舍 当n=14时,八数和为140,符合题意 最大数最小值:21 ★★★★★ 倒数的定义、有理数计算、分类讨论思想 已知x,y是两个有理数,其倒数的和、差、积、商的四个结果中,有三个是相等的, (1)填空:x与y的和的倒数是; (2)说明理由 设x,y的倒数分别为a,b(a≠0,b≠0,a+b≠a-b), 则a+b,a-b,ab,a/b中若有三个相等,ab=a/b,即b2=1,b=±1 分类如下: ①当a+b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=0.5 ②当a-b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=-0.5 所以x、y的倒数和为a+b=-0.5,或-1.5 ★★★★☆ 绝对值化简 将1,2,3,…,101这101个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中 进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____ 绝对值化简得:当a≥b时,原式=b;当a 所以50组可得50个最小的已知自然数,即1,2,3,4 (50) 1275 这50个值的和的最大值为____ 因为本质为取小运算,所以101必须和101一组,101必须和97一组,最后留下的50组结果为:1,3,5,7……101=2500★★★★☆ 有理数计算 在数1,2,3,4……11018,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分) 最小的非负数为“0”,但是11018个正数中有1019个奇数,1019个偶数,他们的和或者差结果必为奇数,因此不可能实现“0” 。












