
广西壮族自治区贵港市桂平第二中学高二数学理下学期期末试卷含解析.docx
6页广西壮族自治区贵港市桂平第二中学高二数学理下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知随机变量的值等于( )A.0.5 B.0.2 C.0.3 D.0.4参考答案:D略2. 变量X与Y相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )A.r2 解答应写出文字说明,证明过程或演算步骤18. (本小题满分12分) 如图所示,直角梯形与等腰直角所在平面互相垂直,为的中点, ,∥,.(1)求证:平面平面; (2)求证:∥平面;(3)求四面体的体积.参考答案:解:(1)∵面面,面面,,∴面, 又∵面,∴平面平面. (2)取的中点,连结、,则 ,又∵,∴, ∴四边形是平行四边形,∴∥,又∵面且面,∴∥面. (3)∵,面面=, ∴面.∴就是四面体的高,且=2. ∵==2=2,∥,∴∴ ∴19. 阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下: 0项1项2项3项4项5项5项以上理科生(人)110171414104 文科生(人)08106321 (1)完成如下2×2列联表,并判断是否有99%的把握认为,了解阿基米德与选择文理科有关? 比较了解不太了解合计理科生 文科生 合计 (2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.(i)求抽取的文科生和理科生的人数;(ii)从10人的样本中随机抽取3人,用X表示这3人中文科生的人数,求X的分布列和数学期望.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828 ,.参考答案:(1)见解析;(2) (i)文科生3人,理科生7人 (ii)见解析【分析】(1)写出列联表后可计算,根据预测值表可得没有的把握认为,了解阿基米德与选择文理科有关.(2)(i)文科生与理科生的比为,据此可计算出文科生和理科生的人数.(ii)利用超几何分布可计算X的分布列及其数学期望.【详解】解:(1)依题意填写列联表如下: 比较了解不太了解合计理科生422870文科生121830合计5446100 计算,没有的把握认为,了解阿基米德与选择文理科有关.(2)(i)抽取的文科生人数是(人),理科生人数是(人).(ii)的可能取值为0,1,2,3,则,,,.其分布列为 0123 所以.【点睛】本题考查独立性检验、分层抽样及超几何分布,注意在计算离散型随机变量的概率时,注意利用常见的概率分布列来简化计算(如二项分布、超几何分布等).20. 在平面直角坐标系中,点P为曲线C上任意一点,且P到定点F(1,0)的距离比到y轴的距离多1.(1)求曲线C的方程;(2)点M为曲线C上一点,过点M分别作倾斜角互补的直线MA,MB与曲线C分别交于A,B两点,过点F且与AB垂直的直线l与曲线C交于D,E两点,若|DE|=8,求点M的坐标.参考答案:【考点】抛物线的简单性质.【分析】(1)由已知得:P到点F(1,0)的距离比到直线l:x=﹣1的距离相等,由抛物线的定义得曲线C为抛物线,即可求曲线C的轨迹方程;(2)求出直线AB的斜率,可得直线DE的方程,利用抛物线的定义建立方程,即可得出结论.【解答】解:(1)由已知得:P到点F(1,0)的距离比到直线l:x=﹣1的距离相等∴由抛物线的定义得曲线C为抛物线, =1∴轨迹方程为:y2=4x. (2)设M(x0,y0),直线MA的斜率为k,直线MB的斜率为﹣k,k≠0,直线MA的方程为y﹣y0=k(x﹣x0),将y2=4x代入整理得到ky2﹣4y+4y0﹣4kx0=0,则yA=﹣y0,又yA﹣y0=k(xA﹣x0),整理得到xA=﹣,将其中的k换成﹣k,得到xB=+,yB=﹣﹣y0,那么直线AB的斜率k=﹣,∴直线DE的斜率为,方程为y=(x﹣1),代入y2=4x,可得=0,∴x1+x2=2+,∵|DE|=8,∴2++2=8,∴y0=±2,x0=1,∴M(1,±2).21. 若复数z满足﹣7﹣6i+z=﹣4﹣2i,则|z|= .参考答案:5【考点】A8:复数求模.【分析】先求出z=﹣4﹣2i+7+6i=3+4i,由此能求出|z|.【解答】解:∵复数z满足﹣7﹣6i+z=﹣4﹣2i,∴z=﹣4﹣2i+7+6i=3+4i,∴|z|==5.故答案为:5.22. 已知A,B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴交于点P.(Ⅰ)若直线AB经过抛物线y2=4x的焦点,求A,B两点的纵坐标之积;(Ⅱ)若点P的坐标为(4,0),弦AB的长度是否存在最大值?若存在,求出其最大值;若。












