
pox__LED灯带在植物生长中的应用.doc
3页LED 灯带在植物生长中的应用白光白光 LEDLED 的基本参数的基本参数白光是复合光,可以用红、绿、蓝(R、G、B)三基色 LED 混合成白光1995 年 前后生产的一种集成 LED 白光灯(或称全色 LED 灯)由 2 个高亮度蓝光 LED、15 个绿光 LED 及 5 个红光 LED 组成一般来说, 冷白光的色温为 4500-10000K,主波长为 5500Knm,典型光通量为 150lm暖白光的色温为 2850-3800K,主波长为 3300Knm,典型光通量为 135lm 蓝光 的色温为 20000K,主波长为 470K,典型光通量为 4.97lm光线光谱与植物光合作用的关系光线光谱与植物光合作用的关系光谱范围对植物生理的影响:280 - 315nm 对形态与生理过程的影响极小315 -400nnm 叶绿素吸收少,影响光周期效应,阻止茎伸长400 -520nm(蓝) 叶绿素与类胡萝卜素吸收比例最大,对光合作用影响最大520 -610nm 色素的吸收率不高610 -720nm(红) 叶绿素吸收率低,对光合作用与光周期效应有显著影响720 -1000nm 吸收率低,刺激细胞延长,影响开花与种子发芽>1000nm 转换成为热量Harry Stijger(《Flower Tech》2004 年 7(2))认为:事实上在光合作用过 程中,光颜色的影响性并无不同,因此使用全光谱最有利于植物的发育。
植物对光谱的敏感性与人眼不同人眼最敏感的光谱为 555nm,介于黄-绿光 对蓝光区与红光区敏感性较差植物则不然,对于红光光谱最为敏感,对绿光 较不敏感,但是敏感性的差异不似人眼如此悬殊植物对光谱最大的敏感地区 为 400-700nm此区段光谱通常称为光合作用有效能量区域阳光的能量约有 45%位于此段光谱因此如果以人工光源以补充光量,光源的光谱分布也应该 接近于此范围光源射出的光子能量因波长而不同例如波长 400nm(蓝光)的能量为 700nm(红光)能量的 1.75 倍但是对于光合作用而言,两者波长的作用结果 则是相同蓝色光谱中多余不能作为光合作用的能量则转变为热量换言之, 植物光合作用速率是由 400-700nm 中植物所能吸收的光子数目决定,而与各光 谱所送出的光子数目并不相关但是一般人的通识都认为光颜色影响了光合作 用速率植物对所有光谱而言,其敏感性有所不同此原因来自叶片内色素 (pigments)的特殊吸收性其中以叶绿素最为人所知晓但是叶绿素并非对 光合作用唯一有用的色素其它色素也参与光合作用,因此光合作用效率无法 仅有考虑叶绿素的吸收光谱光合作用路径的相异也与颜色不相关光能量由叶片中的叶绿素与胡萝卜素所 吸收。
能量由两种光合系统以固定水分与二氧化碳转变成为葡萄糖与氧气此 过程利用所有可见光的光谱,因此各种颜色的光源对于光合作用的影响几乎没 有不同有些研究人员认为在橘红光部分有最大的光合作用能力但是此并不表示植物 应该栽培于此种单色光源对植物的形态发展与叶片颜色而言,植物应该接收 各种平衡的光源蓝色光源(400-500nm)对植物的分化与气孔的调节十分重要如果蓝光不足, 远红光的比例太多,茎部将过度成长,而容易造成叶片黄化红光光谱 (655~665nm)能量与远红光光谱(725~735nm)能量的比例在 1.0 与 1.2 之间, 植物的发育将是正长但是每种植物对于这些光谱比例的敏感性也不同在温室内部常常以高压钠灯做为人工光源以 Philips Master SON-TPIA 灯源 为例,在橘红色光谱区有最高能量然而在远红外光的能量并不高,因此红光/ 远红光能量比例大于 2.0但是由于温室仍有自然阳光,因此并未造成植物变 短如果在生长箱使用此光源,就可能产生影响)在自然阳光下,蓝光能量占有 20%对人工光源而言,并不需要如此高的比例 对正常发育的植物而言,多数植物只需要 400-700nm 范围内 6%的蓝光能源。
在自然阳光下,已有此足够蓝光能量因此人工光源不需要额外补充更多的蓝 光光谱但是在自然光源不足时(如冬天),人工光源需要增加蓝光能量,否 则蓝色光源将成为植物生长的限制影响因子但是如果不用光源改善方法,仍 是有其它方法可补救此光源不足问题例如以温度调节或是施用生长荷尔蒙由 BSE 研究室对光源与植物组培养苗发育关系的研究结果,有两点结论与此篇 文章相近:一、光源的颜色并不影响光合作用速率,因此也不影响鲜重或干物重影响光 合作用速率的主要因子仍是光量与温度二、光质影响了组培苗的形态,例如组培苗节距长度(苗的高度),叶片叶绿 素含量,地下物与地下物的比例等 (中兴大学生物系统工程研究室 陈加忠)光合作用的过程光合作用的过程光反应阶段光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶 段叫做光反应阶段光反应阶段的化学反应是在叶绿体内的类囊体上进行的暗反应阶段光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶 段叫做暗反应阶段暗反应阶段中的化学反应是在叶绿体内的基质中进行的 光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、 缺一不可的光合作用的重要意义:光合作用为包括人类在内的几乎所有生物的生存提供了物 质来源和能量来源。
因此,光合作用对于人类和整个生物界都具有非常重要的 意义光合作用的意义可以概括为以下几个方面:一、制造有机物绿色植物通过光合作用制造有机物的数量是非常巨大的据 估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球 上每年工业产品的总产量所以,人们把地球上的绿色植物比作庞大的“绿色 工厂”绿色植物的生存离不开自身通过光合作用制造的有机物人类和动物 的食物也都直接或间接地来自光合作用制造的有机物二、转化并储存太阳能绿色植物通过光合作用将太阳能转化成化学能,并储 存在光合作用制造的有机物中地球上几乎所有的生物,都是直接或间接利用 这些能量作为生命活动的能源的煤炭、石油、天然气等燃料中所含有的能量, 归根到底都是古代的绿色植物通过光合作用储存起来的三、使大气中的氧和二氧化碳的含量相对稳定据估计,全世界所有生物通过 呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为 10000 T/s(吨每秒) 以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完然而,这 种情况并没有发生这是因为绿色植物广泛地分布在地球上,不断地通过光合 作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对 的稳定。
四、对生物的进化具有重要作用绿色植物出现以前,地球的大气中并没有氧 只是在距今 20 亿至 30 亿年以前,绿色植物在地球上出现并逐渐占有优势以后, 地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生 和发展由于大气中的一部分氧转化成臭氧,臭氧在大气上层形成臭氧层,能 够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物 开始逐渐能够在陆地上生活经过长期的生物进化过程,最后才出现广泛分布 在自然界的各种动植物。
