好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

线性网络的信号流图分析法.ppt

20页
  • 卖家[上传人]:cl****1
  • 文档编号:568717568
  • 上传时间:2024-07-26
  • 文档格式:PPT
  • 文档大小:376.50KB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第五章 线性网络的信号流图分析法本章的主要内容:本章的主要内容:• •信号流图信号流图• •信号流图的变换规则信号流图的变换规则• •MasonMason公式公式• •线性网络的线性网络的SFGSFG分析分析• •状态转移图状态转移图 导言导言• •信号流图是表示线性代数方程组的一种加权有向信号流图是表示线性代数方程组的一种加权有向图,它是图论应用的一个重要分支图,它是图论应用的一个重要分支• •信号流图分析法具有直观、灵活、简便的优点,信号流图分析法具有直观、灵活、简便的优点,它是分析线性系统的一个有效工具,不但应用于它是分析线性系统的一个有效工具,不但应用于对电网络进行分析,还在自动控制、机械、化工对电网络进行分析,还在自动控制、机械、化工等工程领域得到应用等工程领域得到应用 § 5-1 信号流图信号流图• •基本概念:基本概念:信号流图是一种表示线性代数方程组信号流图是一种表示线性代数方程组变量关系的加权有向图,它由节点和联接在节点变量关系的加权有向图,它由节点和联接在节点之间的有向支路构成之间的有向支路构成 例如例如: :在节点在节点x x、、y y之间有传输值为之间有传输值为a a的一条支路,箭的一条支路,箭头指向节点头指向节点y y,如图,如图5-15-1所示。

      该信号流图所对应的所示该信号流图所对应的方程是方程是y=axy=ax • •如果节点如果节点 有两条或两条以上的入支路,其对应有两条或两条以上的入支路,其对应方程为方程为 (入支路传输值(入支路传输值× ×该入支路起始处的节该入支路起始处的节点变量),其中求和是对节点点变量),其中求和是对节点 的所有入支路进行的所有入支路进行的若节点的若节点 有两条或两条以上的支路,则信号有两条或两条以上的支路,则信号(( )要沿节点)要沿节点 的每一条出支路传输的每一条出支路传输 一个含一个含n n个变量的线性代数方程个变量的线性代数方程可用以下方法写成以可用以下方法写成以 为输出量的因果形式方程为输出量的因果形式方程通过移项也能得到因果形式的方程,即通过移项也能得到因果形式的方程,即 SFGSFG和代数方程间的对应关系和代数方程间的对应关系和代数方程间的对应关系和代数方程间的对应关系• •设线性代数方程为设线性代数方程为• •其对应的其对应的SFGSFG如图如图5-25-2所示所示 • •对于代表线性代数方程组的向量方程:对于代表线性代数方程组的向量方程:AX=BFAX=BF( (其中其中A A为为n×nn×n矩阵,矩阵,B B为为n×pn×p矩阵,矩阵,X X为为n n维变量向量,维变量向量,F F为为p p维输入向量维输入向量) )可以改写为以下因果形式的方程:可以改写为以下因果形式的方程:定义联接矩阵:定义联接矩阵:则式(则式(5-1-95-1-9)可表示为)可表示为联接矩阵联接矩阵C C是一个是一个n×(n+p)n×(n+p)增广矩阵,它描述了图的关增广矩阵,它描述了图的关联性质和支路的权值。

      联性质和支路的权值C C矩阵的每一行对应于一个矩阵的每一行对应于一个作为果的变量;每一列对应于一个作为因的变量作为果的变量;每一列对应于一个作为因的变量它的元素它的元素 为零时表示节点为零时表示节点j j与节点与节点i i间没有支路;间没有支路;元素元素 非零时表示节点非零时表示节点j j至节点至节点i i间有一条权值为间有一条权值为 的有向支路的有向支路 § 5-2 信号流图的变换规则信号流图的变换规则• •同方向并联支路简化规则同方向并联支路简化规则如图如图5-85-8((a a)所示其对应方程为)所示其对应方程为将上式改写为将上式改写为与式(与式(5-2-25-2-2)相对应的)相对应的SFGSFG如图如图5-85-8((b b)所示由此)所示由此可知,可知,n n条同方向并联支路可用一条支路代替,该条同方向并联支路可用一条支路代替,该支路的传输值等于支路的传输值等于n n条并联支路传输值之和条并联支路传输值之和 同方向级联支路简化规则同方向级联支路简化规则同方向级联支路简化规则同方向级联支路简化规则• •同方向级联支路是指从节点同方向级联支路是指从节点x0x0出发连续经过出发连续经过n n条同条同方向的支路而至节点方向的支路而至节点x xn n, ,其中经过的节点其中经过的节点x x1 1,x ,x2 2,…,…,,x xn-1n-1都只有一条入支路和一条出支路,如图都只有一条入支路和一条出支路,如图5-95-9((a a)所)所示。

      其对应方程为示其对应方程为以上方程组可合并为以上方程组可合并为与上式相对应得与上式相对应得SFGSFG如图如图5-95-9((b b)所示由此可知,)所示由此可知,n n条条同方向级联支路可用一条支路代替,该支路的传输值同方向级联支路可用一条支路代替,该支路的传输值等于等于n n条级联支路的支路传输值之积条级联支路的支路传输值之积 支路移动(节点消去)规则支路移动(节点消去)规则支路移动(节点消去)规则支路移动(节点消去)规则• •为使为使SFGSFG中的节点数减少,就要不断的消去节点,采用规则为支中的节点数减少,就要不断的消去节点,采用规则为支路移动规则,也称为节点消去规则路移动规则,也称为节点消去规则 在方程组(在方程组(5-1-75-1-7)中,若要消去变量)中,若要消去变量 x3x3,可将式(,可将式(5-1-75-1-7)中第一)中第一方程代入第二个、第三个方程,得方程代入第二个、第三个方程,得与式(与式(5-2-75-2-7)对应的)对应的SFGSFG如图如图5-125-12所示将图所示将图5-125-12与图与图5-45-4相比较,可以看出,节点相比较,可以看出,节点x3x3已被消去,支路发生移动。

      移动已被消去,支路发生移动移动的规则为:为消去节点的规则为:为消去节点x3,x3,使与使与x3x3相联的每一条入支路的始端不动,相联的每一条入支路的始端不动,而其末端分别沿着每一条出支路做正向移动,移至该出支路的末而其末端分别沿着每一条出支路做正向移动,移至该出支路的末端,形成端,形成3×2=63×2=6条新支路每条新支路的传输值为被移动支路与条新支路每条新支路的传输值为被移动支路与沿其移动支路二支路传输值之积如果被消节点有沿其移动支路二支路传输值之积如果被消节点有mm条入支路、条入支路、n n条出支路,则支路移动后的新支路数为条出支路,则支路移动后的新支路数为m×nm×n 自环消去规则自环消去规则自环消去规则自环消去规则• •在绘制在绘制SFGSFG和简化和简化SFGSFG的过程中,常有自环出现在此情况下,的过程中,常有自环出现在此情况下,必须消去自环,才能使必须消去自环,才能使SFGSFG进一步化简图进一步化简图5-165-16所示的所示的SFGSFG对应的对应的线性方程组为线性方程组为在式(在式(5-2-85-2-8)的第一个式子中,等式两端均有)的第一个式子中,等式两端均有x2x2,因而在,因而在SFGSFG中出中出现自环,现将该式移项,得现自环,现将该式移项,得对应于式(对应于式(5-2-95-2-9)的)的SFGSFG如图如图5-175-17所示,自环已消去。

      将上例中消去所示,自环已消去将上例中消去自环的方法推广到一般情形,可得消去自环的规则:自环的方法推广到一般情形,可得消去自环的规则:欲消去节点欲消去节点x0x0上传输值为上传输值为a a的自环,将与节点的自环,将与节点x0x0相联每条入支路传输相联每条入支路传输值分别除以(值分别除以(1-a1-a),同时去掉自环消去自环对节点),同时去掉自环消去自环对节点x0x0的各条出的各条出支路无影响支路无影响 倒向规则倒向规则倒向规则倒向规则((1 1)从源节点出发的支路可以倒向;不是源节点出发的单支路不能)从源节点出发的支路可以倒向;不是源节点出发的单支路不能倒向2 2)将两节点之间的支路倒向后,支路传输值为原支路传输值的倒)将两节点之间的支路倒向后,支路传输值为原支路传输值的倒数;数;((3 3)将原来终结在被倒向支路末端节点的其他支路全部改为终结在)将原来终结在被倒向支路末端节点的其他支路全部改为终结在倒向后支路末端节点上,其传输值为原支路传输值乘以倒向支路倒向后支路末端节点上,其传输值为原支路传输值乘以倒向支路传输值的负倒数传输值的负倒数 § 5-3 Mason公式公式• •MasonMason图增益公式(简称图增益公式(简称MasonMason公式)是求公式)是求SFGSFG图增益图增益(传输值)的公式,它与用克莱姆法则求线性方程组(传输值)的公式,它与用克莱姆法则求线性方程组解的方法相当。

      解的方法相当MasonMason公式直接根据公式直接根据SFGSFG的结构给出传的结构给出传输值的解,应用更加方便输值的解,应用更加方便 MasonMason公式的基本概念公式的基本概念公式的基本概念公式的基本概念• •MasonMason公式公式式中式中Δ Δ为图行列式,为图行列式, Δ Δ由下式确定:由下式确定:式(式(5-3-25-3-2)中,)中, 表示第表示第k k个一阶回路的传输值,求和个一阶回路的传输值,求和 是对全部是对全部一阶回路进行的;一阶回路进行的; 表示第表示第k k组组i i阶回路的传输值,阶回路的传输值, 是对全部是对全部i i阶阶回路进行的在回路进行的在SFGSFG中,定义中,定义n n个互不接触回路的集合为个互不接触回路的集合为n n阶回路,阶回路,它的传输值就是这它的传输值就是这n n个互不接触回路传输值之积一个一阶回路就个互不接触回路传输值之积一个一阶回路就是一个回路是一个回路式(式(5-3-15-3-1)分子中的)分子中的 为从源节点到汇节点的第为从源节点到汇节点的第mm条前向路径的传条前向路径的传输值;而输值;而 则是和第则是和第mm条前向路径不相接触的子图的图行列式,条前向路径不相接触的子图的图行列式,又称又称 为第为第mm条前向路径的路径因子。

      求和是对源节点到汇节点条前向路径的路径因子求和是对源节点到汇节点的所有前向路径进行的的所有前向路径进行的 § 5-4 线性网络的线性网络的SFG分析分析• •无论列写什么方程组,要能正确分析线性网络,无论列写什么方程组,要能正确分析线性网络,必须满足:必须满足:((1 1)方程组的方程数与变量数相同;)方程组的方程数与变量数相同;((2 2)方程组中的方程是相互独立的方程组中的方程是相互独立的 • •在常态网络中,将每一个独立源均作为一条支路,选择一树,树中包含在常态网络中,将每一个独立源均作为一条支路,选择一树,树中包含网络中所有的电压向量、支路电流向量将它们按树支和连支分块为网络中所有的电压向量、支路电流向量将它们按树支和连支分块为式中下标式中下标t t、、l l分别表示树支、连支,下标分别表示树支、连支,下标a a表示全部再将电压、电流向量的表示全部再将电压、电流向量的树支、连支分块分别按非源支路和独立源支路分块,即树支、连支分块分别按非源支路和独立源支路分块,即式中下标式中下标V V、、I I分别表示电压源、电流源分别表示电压源、电流源 、、 代表树支中非源支路的电压代表树支中非源支路的电压向量、电流向量。

      根据向量、电流向量根据KCLKCL方程方程可得可得 式中式中 为基本割集矩阵中对应于连支的分块,将该式分块为基本割集矩阵中对应于连支的分块,将该式分块展开为展开为同理,根据同理,根据KVLKVL方程方程 可得关系可得关系式中式中 为基本回路矩阵的树支分块,展开式得为基本回路矩阵的树支分块,展开式得 • •写出非源支路的混合变量形式的支路电流电压关系,使方程右端写出非源支路的混合变量形式的支路电流电压关系,使方程右端向量中的元素为连支电压和树支电流,左端向量中的元素为连支向量中的元素为连支电压和树支电流,左端向量中的元素为连支电流和树支电压,即电流和树支电压,即再将式(再将式(5-4-35-4-3)中的)中的 和式(和式(5-4-65-4-6)中的)中的 代入式(代入式(5-4-75-4-7)中,即)中,即得关系得关系式(式(5-4-85-4-8)就是一组因果形式的混合变量方程。

      就是一组因果形式的混合变量方程 § 5-5 状态转移图状态转移图• •本节介绍一种描述状态方程组的信号流图,即状态转移图(本节介绍一种描述状态方程组的信号流图,即状态转移图(state state transition diagram)transition diagram)状态转移图与它所描述的时域状态方程之间状态转移图与它所描述的时域状态方程之间有清晰的对应关系,而且它很容易根据系统的转移函数得到,因有清晰的对应关系,而且它很容易根据系统的转移函数得到,因而在有源网络综合中是一种很有用的工具而在有源网络综合中是一种很有用的工具 • •描述一个线性动态网络的状态的一般形式是描述一个线性动态网络的状态的一般形式是对其进行拉氏变换后,可以得到对其进行拉氏变换后,可以得到将上式中等号左端的将上式中等号左端的S S移至右端,就写成了相应的因果形式的方程:移至右端,就写成了相应的因果形式的方程:由此可以画出相应的由此可以画出相应的SFGSFG • •对于状态方程式(对于状态方程式(5-5-15-5-1)进行拉氏变换,整理后得状态方程的复)进行拉氏变换,整理后得状态方程的复频域解:频域解:式中式中称为预解矩阵。

      如果网络的输入为零,则称为预解矩阵如果网络的输入为零,则预解矩阵中的元素:预解矩阵中的元素:可以看出,在状态转移图中求输入节点可以看出,在状态转移图中求输入节点 至输出节点至输出节点 的图增的图增益等于式(益等于式(5-5-115-5-11)的)的 用这种方法,令用这种方法,令i=1,2,…,n,i=1,2,…,n,便可求出便可求出n ×nn ×n矩阵矩阵 的各元素的各元素。

      点击阅读更多内容
      相关文档
      【全国硕士研究生入学统一考试政治】2020年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2015年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2010年考研政治真题.docx 【全国硕士研究生入学统一考试政治】1996年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2001年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2016年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2000年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2007年考研政治真题.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2004年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2003年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2019年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2009年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2001年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2021年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2014年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2018年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2008年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2011年考研政治真题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.