
高二数学双曲线的几何性质原创人教.ppt
22页8.4 双曲线双曲线 的简单几何性质的简单几何性质oYX关于X,Y轴,原点对称(±a,0),(0,±b)(±c,0)A1A2 ; B1B2|x|a,|y|≤bF1F2A1A2B2B1复习 椭圆的图像与性质上述性质其研究方法各是什么?双曲线的标准方程形式一:形式一: (焦点在(焦点在x轴上,(轴上,(-c,,0)、)、 ((c,,0)))) 形式二:形式二:(焦点在(焦点在y轴上,(轴上,(0,,-c)、()、(0,,c)))) 其中其中复复 习习 YXF1F2A1A2B1B2焦点在x轴上的双曲线图像 2、对称性、对称性 一、研究双曲线一、研究双曲线 的简单几何性质的简单几何性质1、范围、范围关于关于x轴、轴、y轴和原点都是对称轴和原点都是对称x轴、轴、y轴是双曲线的对称轴,原点是对称中心,轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的又叫做双曲线的中心中心。
xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授课堂新授 3、顶点、顶点(1)双曲线与对称轴的交点,叫做双曲线的)双曲线与对称轴的交点,叫做双曲线的顶点顶点xyo-bb-aa如图,线段如图,线段 叫做双曲线叫做双曲线的实轴,它的长为的实轴,它的长为2a,a叫做叫做实半轴长;线段实半轴长;线段 叫做双叫做双曲线的虚轴,它的长为曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长叫做双曲线的虚半轴长((2))实轴与虚轴等长的双曲线实轴与虚轴等长的双曲线叫叫等轴双曲线等轴双曲线((3))M(x,y)4、渐近线、渐近线N(x,y’)Q慢慢靠近慢慢靠近xyoab(1)(2) 利用渐近线可以较准确的利用渐近线可以较准确的画出双曲线的草图画出双曲线的草图(3)5、离心率、离心率离心率c>a>0e >1e是表示双曲线开口大小的一个量,e越大开口越大((1)定义:)定义:((2))e e的范围的范围:((3))e e的含义:的含义:(4)等轴双曲线的离心率等轴双曲线的离心率e= ?( 5 )A1A2B1B2abcx0y几何意义焦点在x轴上的双曲线的几何性质复习 双曲线标准方程:YX双曲线性质:1、范围: x≥a或x≤-a2、对称性:关于x轴,y轴,原点对称。
3、顶点A1(-a,0),A2(a,0)4、轴:实轴 A1A2 虚轴 B1B2A1A2B1B25、渐近线方程:6、离心率:e=XYF1F2OB1B2A2A1焦点在y轴上的双曲线图像焦点在y轴上的双曲线的几何性质口答 双曲线标准方程:YX双曲线性质:1、范围:y≥a或y≤-a2、对称性:关于x轴,y轴,原点对称3、顶点B1(0,-a),B2(0,a)4、轴:实轴 B1B2 ; 虚轴 A1A2A1A2B1B25、渐近线方程:6、离心率:e=c/aF2F2o如何记忆双曲线的渐进线方程?小小 结结xyo或或关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双双曲曲线线范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象 xyo例例1 :求双曲线求双曲线的实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程渐近线方程解:把方程化为标准方程解:把方程化为标准方程可得可得:实半轴长实半轴长a=4虚半轴长虚半轴长b=3半焦距半焦距c=焦点坐标是焦点坐标是(0,-5),(0,5)离心率离心率:渐近线方程渐近线方程:14416922= =- -xy1342222= =- -xy53422= =+ +45= == =ace例题讲解例题讲解 1 1、填表、填表|x|≥618|x|≥3(±3,0)y=±3x44|y|≥2(0,±2)1014|y|≥5(0,±5)12= =+ +byax222( a>> b >>0))12222= =- -byax( a>> 0 b>>0) 222= =+ + ba(a>> 0 b>>0) c222= =- - ba(a>> b>>0) c椭椭 圆圆双曲线双曲线方程方程a b c关系关系图象图象椭圆与双曲与双曲线的性的性质比比较yXF10F2MXY0F1F2 p小小 结结渐近线渐近线离心率离心率顶点顶点对称性对称性范围范围 准线准线|x| a,|y|≤b|x| ≥ a,,y R对称轴:对称轴:x轴,轴,y轴轴 对称中心:原点对称中心:原点对称轴:对称轴:x轴,轴,y轴轴 对称中心:原点对称中心:原点((-a,0) (a,0) (0,b) (0,-b)长轴:长轴:2a 短轴:短轴:2b(-a,0) (a,0)实轴:实轴:2a虚轴:虚轴:2be =ac( 0<<e <<1 )ace=(e1)无无 y = abx±P113,, 1小结: 本节课讨论了双曲线的简单几何性质:范围,对称性,顶点,离心率,渐近线,请同学们熟练掌握。
作业 113 ,1例例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线,求证: (1)双曲线和它的共轭双曲线有共同的渐近线; (2)双曲线和它的共轭双曲线的四个焦点在同一个圆上.YXA1A2B1B2F1F2oF’2F’1证明:(1)设已知双曲线的方程是:则它的共轭双曲线方程是:渐近线为:渐近线为:可化为:故双曲线和它的共轭双曲线有共同的渐近线(2)设已知双曲线的焦点为F(c,0),F(-c,0)它的共轭双曲线的焦点为F1(0,c), F2(0,-c),∵∴c=c'所以四个焦点F1, F2, F3, F4在同一个圆问:有相同渐近线的双曲线方程一定是共轭双曲线吗?谢谢谢谢光光临临!!。
