
1106高一数学(3.2.12幕、指、对函数模型增长的差异性).ppt
14页3.2.1 3.2.1 几类不同增长的函数模型几类不同增长的函数模型第二课时第二课时 幂、指、对函数模型幂、指、对函数模型 增长的差异性增长的差异性问题提出问题提出 1.1.指数函数指数函数y=ay=ax x (a (a>1)1),对数函数,对数函数 y=logy=loga ax(ax(a>1)1)和幂函数和幂函数y=x y=x n n (n (n>0)0)在区在区间(间(0 0,,+∞+∞)上的单调性如何?)上的单调性如何? 2.2.利用这三类函数模型解决实际问利用这三类函数模型解决实际问题,其增长速度是有差异的,我们怎样题,其增长速度是有差异的,我们怎样认识这种差异呢?认识这种差异呢? 探究(一):特殊幂、指、对函数模型的差异探究(一):特殊幂、指、对函数模型的差异 对于函数模型对于函数模型 ::y=2y=2x x, y=x, y=x2 2, y=log, y=log2 2x x 其中其中x x>0. 0. 思考思考1:1:观察三个函数的自变量与函数值对应观察三个函数的自变量与函数值对应 表表, , 这三个函数增长的快慢情况如何?这三个函数增长的快慢情况如何? …1.7661.7661.5851.5851.3791.3791.1381.1380.8480.8480.4850.4850 0-0.737-0.737-2.322-2.322y=logy=log2x x…11.5611.569 96.766.764.844.843.243.241.961.961 10.360.360.040.04y=xy=x2…10.55610.5568 86.0636.0634.5954.5953.4823.4822.6392.6392 21.5161.5161.1491.149y=2y=2x…3.43.43.03.02.62.62.22.21.81.81.41.41 10.60.60.20.2x xx012345678y=2x12481632 64 128 256y=x201491625 364964思考思考2:2:对于函数模型对于函数模型y=2y=2x x和和y=xy=x2 2,观察下列,观察下列自变量与函数值对应表:自变量与函数值对应表: 当当x x>0 0时,你估计函数时,你估计函数y=2y=2x x和和y=xy=x2 2的图象共有的图象共有几个交点?几个交点? 思考思考4:4:在同一坐标系中这三个函数图象的相在同一坐标系中这三个函数图象的相对位置关系如何?请画出其大致图象对位置关系如何?请画出其大致图象. . xyo11 24y=2xy=x2y=log2x思考思考3:3:设函数设函数f(xf(x)=2)=2x x -x -x2 2(x(x>0)0),你能用二,你能用二分法求出函数分法求出函数f(x)f(x)的零点吗?的零点吗?思考思考5:5:根据图象,不等式根据图象,不等式loglog2 2x x<2 2x x
