
2022年山东省青岛市胶南第一中学高二数学文期末试卷含解析.docx
7页2022年山东省青岛市胶南第一中学高二数学文期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知抛物线的准线过双曲线的焦点,则双曲线的离心率为( )参考答案:C2. 在独立性检验中,统计量有两个临界值:3.841和6.635;当3.841时,认为两个事件无关,当>6.635时,有99%的把握说明两个事件有关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的 =20.87,根据这一数据,认为打鼾与患心脏病之间( )A.认为两者无关 B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关 D.约有99%的打鼾者患心脏病 参考答案:C3. 在△ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是( )A. B. C. D. 参考答案:D 解析:4. 在某场考试中,同学甲最后两道单项选择题(每题四个选项)不会解答,分别随机选择一个选项作为答案,在其答对了其中一道题的条件下,两道题都答对的概率为( )A. B. C. D.参考答案:B同学甲至少答对一道题的概率为:,两道题都答对的概率为,由条件概率计算公式可知,同学甲两道题都答对的概率为:.本题选择B选项. 5. 给出以下命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)两条异面直线在同一个平面上的射影不可能平行;(3)两个不重合的平面,若内有不共线的三个点到的距离相等,则;(4)不重合的两直线和平面,若,,则。
其中正确命题个数是( ) A.0 B.1 C.2 D.3参考答案:A略6. 已知双曲线的左右焦点分别为F、F,过F的直线交该双曲线右支于两点A、B.若,则的周长为( ) A、4 B、20 C、 D、8参考答案:B略7. 下列说法中正确的是( )A.平行于同一直线的两个平面平行 B.垂直于同一平面的两个平面平行C.平行于同一直线的两条直线平行 D.垂直于同一平面的两个平面垂直参考答案:C略8. 在等差数列中,,则此数列的前13项之和等于( ) A.13 B.26 C.52 D.156 参考答案:B9. 用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( ) A.三个内角都不大于60° B.三个内角都大于60° C.三个内角至多有一个大于60° D.三个内角至多有两个大于60° 参考答案:B【考点】反证法的应用. 【专题】证明题;推理和证明. 【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可. 【解答】解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°, ∴第一步应假设结论不成立, 即假设三个内角都大于60°. 故选:B. 【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立. 10. 如图,已知,用表示,则( )A. B. C. D.参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 已知命题P:不等式; 命题q:在△ABC中,“A > B”是“sinA > sinB”成立的必要不充分条件. 有下列四个结论:①p真q假;②“p∧q”为真;③ “p∨q”为真;④p假q真 其中正确结论的序号是 .(请把正确结论填上) 参考答案:略12. 如图,是的高,是外接圆的直径,圆半径为,,求的值。
参考答案:连接, ∽, ………………………………………5分, ……10分13. 用反证法证明命题:“三角形的内角中至少有一个不小于60度”时,正确的反设是 参考答案:三角形的内角中都小于60度略14. 曲线表示双曲线,则的取值范围为 . 参考答案:15. 设抛物线C:的焦点为F,点A为抛物线C上一点,若,则直线FA的倾斜角为___________.参考答案:或. 【分析】先设出A的坐标,根据抛物线的定义可知该点到准线的距离与其到焦点的距离相等,进而利用点到直线的距离求得x的值,代入抛物线方程求得y.然后求解直线的斜率,得到直线FA的倾斜角.【详解】设该坐标为,抛物线:的焦点为,根据抛物线定义可知,解得,代入抛物线方程求得,故坐标为:,的斜率为:,则直线的倾斜角为:或. 16. 若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b等于 .参考答案:217. 已知双曲线x2﹣=1与抛物线y2=2px(p>0)有一个公共的焦点F,且两曲线的一个交点为M,若|MF|=5,则点M的横坐标为 .参考答案:3【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据双曲线和考查抛物线的性质,求出p,再根据抛物线的定义,到焦点的距离与到准线的距离相等,得到x0+=5,解得即可.【解答】解:∵抛物线y2=2px(p>0)的焦点为F(,0).双曲线x2﹣=1的焦点为(2,0)或(﹣2,0),∴=2,∵两曲线的一个交点为M,设点M的横坐标x0,|MF|=5,∴x0+=5,∴x0=5﹣=3,故答案为:3.【点评】本题考查双曲线和考查抛物线的焦点,以及抛物线的定义,到焦点的距离与到准线的距离相等,考查学生的计算能力,比较基础.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 已知函数f(x)=log2.(1)判断f(x)的奇偶性;(2)利用函数单调性的定义证明f(x)为定义域上的单调增函数;(2)解关于x的不等式f(x2﹣2)+f(﹣x)<0.参考答案:【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】(1)先利用对数的真数大于零,求得函数的定义域关于原点对称,再根据f(﹣x)+f(x)=0,可得函数为奇函数.(2)利用函数的单调性的定义证得函数f(x)=log2为定义域上的单调增函数.(3)由题意可得原不等式等价于,由此求得x的范围.【解答】解:(1)要使函数f(x)=log2有意义,>0,得﹣2<x<2,故函数的定义域为(﹣2,2),关于原点对称.又f(﹣x)+f(x)=log2+log2=log2(.)=log21=0,故f(x)为奇函数.(2)设﹣2<x1<x2<2,∵f(x2)﹣f(x1)=log2﹣log2=log2=log2,由题设可得x2﹣x1>0,∴>1,∴log2>0,∴函数f(x)=log2为定义域上的单调增函数.(3)因为函数f(x)的定义域(﹣2,2),所以,又根据函数为奇函数,所以不等式f(x2﹣2)+f(﹣x)<0,即f(x2﹣2)<﹣f(﹣x)=f(x).再根据f(x)时定义域内的增函数,可得x2﹣2<x,所以原不等式等价于,求得﹣1<x<0,或 0<x<2,即原不等式的解集为{x|﹣1<x<0,或 0<x<2}.19. 某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f(x);(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.参考答案:【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】(1)不妨设题中比例系数为k,每批购入x 台,共需分 批,每批价值为20x 元,总费用f(x)=运费+保管费;由x=4,y=52可得k,从而得f(x);(2)由(1)知,,由基本不等式可求得当x为何值时,f(x)的最小值.【解答】解:(1)设题中比例系数为k,若每批购入x 台,则共需分 批,每批价值为20x 元,由题意,得:由 x=4 时,y=52 得:∴(2)由(1)知,∴,当且仅当,即x=6 时,上式等号成立;故只需每批购入6张书桌,可以使48元资金够用.【点评】本题考查了基本不等式a+b≥2(a>0,b>0)的应用,解题时,其关键是根据题意列出函数f(x)的解析式.20. 已知数列{an}的前n项和Sn=n2﹣n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.(I)求数列{an},{bn}的通项公式;(II)若cn=an?bn,求数列{cn}的前n项和Tn.参考答案:【考点】数列的求和.【分析】(I)数列{an}的前n项和sn=n2﹣n,当n=1时,a1=s1;当n≥2时,an=sn﹣sn﹣1.可得an.利用等比数列的通项公式可得bn.(2)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)数列{an}的前n项和sn=n2﹣n,当n=1时,a1=s1=0;当n≥2时,an=sn﹣sn﹣1=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1时上式也成立,∴an=2n﹣2.设正项等比数列{bn}的公比为q,则,b2=q,b3=q2,3a2=6,∵3a2是b2,b3的等差中项,∴2×6=q+q2,得q=3或q=﹣4(舍去),∴bn=3n﹣1 (Ⅱ)由(Ⅰ)知cn=an?bn=(2n﹣2)3n﹣1=2(n﹣1)3n﹣1,∴数列{cn}的前n项和Tn=2×0×30+2×1×31+2×2×32+…+2(n﹣2)3n﹣2+2(n﹣1)3n﹣1,…① 3Tn=2×0×31+2×1×32+2×2×32+…+2(n﹣2)3n﹣1,+2(n﹣1)3n,…②①﹣②得:﹣2Tn=2×31+2×32+…+2×3n﹣1﹣2(n﹣1)3n=2×=3n﹣3﹣2(n﹣1)3n=(3﹣2n)3n﹣3∴Tn=.21. 已知曲线C1的参数方程为(t为参数,0≤α<π),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin(θ+).(Ⅰ)若极坐标为的点A在曲线C1上,求曲线C1与曲线C2的交点坐标;(Ⅱ)若点P的坐标为(﹣1,3),且曲线C1与曲线C2交于B,D两点,求|PB|?|PD|.参考答案:【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)点对应的直角坐标为(1,1),由曲线C1的参数方程知:曲线C1是过点(﹣1,3)的直线,利用点斜式可得曲线C1的方程.曲线C2的极坐标方程即ρ2=2,展开化为:ρ2=2ρ×(sinθ+cosθ),利用互化公式即可得出曲线C2的。












