
江西省高安市吴有训实验学校2024-2025学年九上数学开学经典模拟试题【含答案】.doc
21页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………江西省高安市吴有训实验学校2024-2025学年九上数学开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中,是勾股数的为( )A. B.0.6,0.8,1.0C.1,2,3 D.9,40,412、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为( )A.6 B.12 C.4 D.83、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是( )A. B. C. D.4、(4分)在下列图形中,既是中心对称图形又是轴对称图形的是 A. B. C. D.5、(4分)如图,数轴上的点A所表示的数为x,则x2的值为( )A.2 B.- −10 C. D.-26、(4分)下列二次根式是最简二次根式的是( )A. B. C. D.7、(4分)7 -的小数部分是( )A.4 - B.3 - C.4 + D.3 +8、(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为( )A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.10、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.11、(4分)在函数中,自变量x的取值范围是__________________.12、(4分)已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.13、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.三、解答题(本大题共5个小题,共48分)14、(12分)如图,将平行四边形的对角线向两个方向延长,分别至点和点,且使.求证:四边形是平行四边形.15、(8分)学校组织八年级350名学生参加“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)求a和b的值;(2)请补全频数分布直方图。
16、(8分)如图,在△ABC中,AB=8,AC=1.点D在边AB上,AD=4.2.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求的值.17、(10分)如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间为,问:(1)当秒时,四边形面积是多少?(2)当为何值时,点和点距离是?(3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)18、(10分)解分式方程:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________ m.20、(4分)若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.21、(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.22、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.23、(4分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 二、解答题(本大题共3个小题,共30分)24、(8分)下面是某公司16名员工每人所创的年利润(单位:万元)5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5(1)完成下列表格:每人所创年利润/万元10853人数1 4(2)这个公司平均每人所创年利润是多少?25、(10分)一个二次函数的图象经过三点.求这个二次函数的解析式并写出图象的开口方向、对称轴和顶点.26、(12分)如图,在 DABC ,ÐC = 90°,AC<BC,D 为 BC 上一点,且到 A、B 两点的距离相等.(1)用直尺和圆规,作出点 D 的位置(不写作法,保留作图痕迹); (2)连结 AD,若 ÐB = 36° ,求∠CAD 的度数.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】根据勾股数的定义进行分析,从而得到答案.【详解】解:A、不是,因()2+()2≠()2;B、不是,因为它们不是正整数C、不是,因为12+22≠32;D、是,因为92+402=412;且都是正整数.故选:D.此题考查勾股定理的逆定理和勾股数的定义,解题关键在于掌握三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.2、A【解析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【详解】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50-S,解得S=1.故选A.本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.3、D【解析】由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.【详解】不等式对应的函数图象是直线在直线“下方”的那一部分,其对应的的取值范围,构成该不等式的解集.所以,解集应为,直线过这点,把代入易得,.故选:D.此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.4、C【解析】试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.考点:1.中心对称图形;2.轴对称图形.5、A【解析】直接利用数轴结合勾股定理得出x的值,进而得出答案.【详解】解:由题意可得:点A所表示的数为x为:-,则x1的值为:1.故选:A.此题主要考查了实数与数轴,正确得出x的值是解题关键.6、C【解析】【分析】最简二次根式: ① 被开方数不含有分母(小数);② 被开方数中不含有可以开方开得出的因数或因式;【详解】A. ,被开方数含有分母,本选项不能选; B. ,被开方数中含有可以开方开得出的因数,本选项不能选; C. 是最简二次根式; D. ,被开方数中含有可以开方开得出的因数,本选项不能选.故选:C【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.7、A【解析】先对进行估算,然后确定7-的范围,从而得出其小数部分.【详解】解:∵3<<4∴-4<-<-3∴3<7-<4∴7-的整数部分是3∴7-的小数部分是7--3=4-故选:A.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在3和4之间,题目比较典型.8、D【解析】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HE时,CG的值最小,想办法求出CG即可.【详解】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HE时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=3,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH=,∴CH=,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选D.本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(本大题共5个小题,每小题4分,共20分)9、y=﹣2x+1.【解析】利用。
