
材料合成与制备结课论文.doc
13页超高压梯度烧结法制备W/ Cu 功能梯度材料摘要 提出了一种制备具有递变电阻及高熔点差功能梯度材料的新方法—超高压梯度烧结法, 并成功制备出了相对密度达到96%的W/Cu梯度功能材料推导了通电烧结过程中梯度材料内部的温度分布, 表明温度场与电流密度及材料的厚度大致成平方的梯度分布模式; 考察了不同的烧结助剂对W/Cu梯度材料致密化的影响, 发现Ni比V和Zr有更好的致密化效果; 观察了W/Cu梯度材料显微结构并对梯度烧结的过程机理进行了初步探讨关键词 梯度功能材料 复合材料 W Cu 烧结 面向等离子体护墙材料( Plasma Facing Material , PFM) 是决定聚变能能否开发成功的关键材料[1]在发生等离子体破裂和垂直位移事件时, 暴露于高热流的PFM 表面承受来自等离子体、高能中子、α粒子、氘、氚及电磁辐射等的冲刷, 而它的另一面必须被强制冷却因此PFM必须具备很高的熔点, 同时应具有很好的抗热冲击性能在具有最高溅射阈值的所有可选材料当中, 金属钨由于其高的抗等离子体冲刷能力, 最有希望用作聚变堆中等离子体与元件相互作用区域中的该类护墙材料[2~3]。
将一面具有高熔点及高温强度的金属钨和另一面具有优良导热性及室温塑性的金属铜结合在一起的复合材料将十分适合作为核聚变装置中的偏滤器材料[2~4]但要将W和Cu这两种性质相差很大的金属(如表1所示) 结合在一起作为PFM会遇到很大困难, 首先是二者的热膨胀系数失配, 造成在制备和服役过程中W2Cu的界面上产生巨大的热应力, 进而导致裂纹的产生以及材料的失效梯度材料的概念被认为是解决这一问题的最佳途径之一[5]其次,由于W和Cu的熔点相差约2300℃,二者没有重叠的烧结温度区, 因而常规热压烧结无法制备此类梯度材料已报导比较成功的W/Cu FGM制备方法是钨骨架渗铜法[6~10], 但这种工艺的缺点是钨骨架的孔隙分布很难控制, 不易获得成分分布从0~100%的严格意义上的梯度材料作者根据W和Cu具有明显的熔点及电阻率差的特点,提出了在超高压条件下通电快速烧结W/Cu FGM的新工艺, 并推导了烧结过程中样品内沿厚度方向的温度分布, 考察了不同烧结助剂对致密化的影响, 用扫描电子显微镜和能谱对W/Cu FGM的显微结构及界面分别进行了观察和分析,初步探讨了W/Cu FGM超高压梯度烧结的机理 表1 W和Cu 材料室温下的主要物理性质 MaterialDensity/ (kg·m- 3)Melting point/ KThermal Expansioncoefficient / (10- 6·K- 1)Thermalconductivity/ (W·m- 1·K- 1)Elasticmodulus/ GPaHardness(HB)Electricresistivity/ (10 - 6Ω·m)Tensilestrength/ MPaPoissonrationTungsten19 3003 6734. 5145410300~4005501 9200. 28Copper8 9001 3561740085501. 723140. 331 超高压梯度烧结的基本原理 由于W和Cu的电阻率相差较大, 当它们组成梯度材料时, 电阻率将沿铜侧到钨侧逐渐增大, 当通过强电流时, 其发热功率及温度应沿铜侧到钨侧是逐渐增大的。
W/ Cu梯度材料的分析模型如图1所示为了问题简化, 我们作以下假设: 1) W/ Cu FGM 在烧结时周边包覆隔热材料,稳态传热时可认为W/ Cu FGM的温度分布与径向无关, 而只与轴向Z有关 2) 忽略辐射传热, 只在Z方向有热传导并遵从一维傅立叶(Fourier)定律 3) 电阻率与温度变化无关, 但在Z方向呈线性分布且ρ= K'·Z , K'是常数 4) 导热系数与温度变化无关, 但在Z方向线性变化且K = K″·Z , K″为常数 在Z 方向任取一厚度为△Z的平面作整体能量衡算, 则: a. 由热传导方式在Z处平面输入的热能为πR2 qz | z ,在Z +△Z输出的热能为πR2 qz | Z +△Z b. △Z 微元电能耗散产生热能的速率为πR2·△Z·J2·ρ, J 是电流密度当达到稳态热平衡时, 有πR2 qz | Z + △Z - πR2 qz | z +πR2·△Z·J2·ρ= 0或qz | Z + △Z - qz | z/△Z= - k′·J2·Z当△Z →0 并取极限, 上述方程可表达为 Dqz/dZ= - k′·J2·Z (1)根据假设(2) 和(4) , 有qz = - k″·Z·dT/dZ, 因而dqz/dZ= - k″·dT/dZ- k″·Z·d2 T/d Z2 , 代入式(1) 得: d2T/dZ+1/Z·dT/dZ- k′/k″·J2 = 0 (2)对上述微分方程进行积分得 dT/dZ= k′/2 k″ J 2·Z +C1/Z T = k′·J2·Z2/4 k″ + C1 ln Z + C2当Z = 0时,dT/dZ值有限, 因而C1 = 0 ;同时令T =TCu , TCu是Cu侧达到热平衡的温度。
定义θ= T - TCu为梯度层的相对过余温度, 则有: θ= T - TCu = k′·J2·Z2 /4 k″ (0≤Z≤L ) (3)从式(3)可见, W/ Cu FGM在通电烧结时, 将产生沿厚度方向呈梯度分布的温度场, 温度分布大致与电流密度和厚度(从Cu 到W) 的平方成正比关系换言之, 控制梯度材料的电阻分布及调节烧结输入的电流, 可以实现具有高熔点差梯度材料, 如W/ Cu梯度材料的梯度烧结图1 W/ Cu FGM 分析模型示意图Fig. 1 Analytical model of W/ Cu FGM2 实验方法 从上述推导过程的假设出发, 设计了烧结W/Cu FGM 的实验装置, 如图2 所示烧结装置主要由碳化钨硬质合金压头、高压模具、附属电源和液压系统组成图2 实验装置示意图Fig. 2 Schematic illust ration ofexperimental setup1 , 2 —Steel and graphite platelet ; 3 —Pyrophyllite sleeve ;4 —Pressurized orientation ; 5 —Anvil of WC2Co hardalloy ;6 —W/ Cu green compactW/ Cu FGM 尺寸为d20 mm ×10 mm 的柱坯,侧面用叶腊石包覆, 叶腊石充当烧结过程的绝缘、隔热和传压介质。
用石墨片和铁片置于柱坯端面作为密封和增压介质烧结时电流经过压头、增压片及密封片从梯度材料的厚度方向通过实验所用的钨粉平均粒径为3μm , 纯度大于99. 9 %; 铜粉的粒度≤74μm , 纯度大于99 %用作烧结助剂的金属Ni , Zr 及V 粉末的粒径均小于74μm , 纯度大于99. 9 %将粉末混合研磨, 在钢模中逐层铺设后压制成生坯梯度层中W 的体积分布按公式φ= ( x/d) p 计算, 式中φ是任意梯度层中W 的体积分数, x 是相应梯度层的位置, d 为梯度层厚度, p 是成分分布指数对于不同的p值, 将有不同的成分分布规律本实验分别配制p= 0. 6 , 1. 0 , 1. 4 , 1. 8 不同分布指数的6 层W/ Cu FGM测定各层的烧结密度时, 每层用石墨纸隔开将压制好的W/ Cu 梯度材料生坯与石墨密封片、增压片及叶腊石组成样品组合, 将组合好的样品置于高压腔内, 加压烧结烧结过程工艺参数为: 压力5 GPa , 通电功率约13 kW(7. 2 V , 1 800A) , 时间40 s烧结样品经表面抛光处理后, 用Archimedes 排水法测定密度; 样品经切面抛光后用扫描电子显微镜及能谱分析材料的微观结构和元素分布。
3 实验结果与讨论3. 1 烧结助剂对W/ Cu FGM致密化的影响从以上梯度材料烧结过程的传热分析可知, 当电流通过样品时, 由于梯度材料的电阻随厚度方向逐渐增大, 因而高温区将集中在电阻率高的富钨侧, 从铜到钨端温度是不断升高的在富钨端, 主要是靠其自身产生的焦耳热来进行烧结; 而在富铜端, 则主要是靠富钨端传导过来的热量进行烧结由于铜的烧结温度远比钨低, 富铜端应该烧结得致密一些图3 所示是分布指数分别为p = 0. 6 , 1. 4 ,1. 8 W/ Cu210 %Ni 6层梯度材料不同层的致密化效果可以看出, 随着铜含量的增加, 材料的致密化程度提高, 到纯铜层时, 几乎已完全致密另外, p值增大(即梯度材料中高电阻率W 的总量增大) ,富铜端的致密化程度相对提高, 这可能是通电烧结时发热量增大从而提高烧结温度的缘故图4 所示是p = 1. 0 , 用Zr 和V 作烧结助剂梯度材料各层的致密化情况在第2 层和最后1 层的相对密度比相邻层要低, 原因可能是在第2层(20 %Cu , 体积分数) 由于钨层的高温导致Cu 从W基体挤压流走这与文献[11]报道的温度过高时W2Cu 复合材料密度降低是一致的。
纯铜层较低的致密度则是其低发热及传导过来热量不足所致W层低的烧结密度是由于其热导率高, 自身烧结温度高及烧结时间短所致图3 W/ Cu210 %Ni FGM各层的致密化效果Fig. 3 Relative density of different layers vs p values图4 不同粘结相对梯度材料各层致密化的影响Fig. 4 Effect s of binders on relative density of different layersW 层(加入2 %Ni 作为烧结助剂) 的烧结相对密度大于93. 5 %加入Zr 作烧结助剂,W/ Cu 梯度材料的密度达到13. 46 g/ cm3 , 是其理论密度的95. 5 %; 而用V 作烧结助剂, 梯度材料的密度为13. 22 g/ cm3 , 是其理论密度的94. 47 %; 用Ni 作烧结助剂, 梯度材料的相对密度达到96. 3 %可见,用Ni 作烧结助剂比V 和Zr 对W/ Cu FGM 致密化效果要好一些 3. 2 微观组织分析图5~8 所示分别是p = 1. 0 W/ Cu210 %Zr FGM 的SEM 形貌图。
从图5 可明显看出W 和Cu成分及结构呈梯度变化, 说明在梯度烧过程中样品内无宏观液相流动图6 所示是单一W 层的形貌,可见W 已良好烧结在一起, 但仍残存气孔, 可能是在超高压下W 粉末吸附的气体无法有效排除或短暂烧结所致图7 和图8 所示分别是含80 %W(体积分数) 和20 %W(体积分数) 层的SEM 图像, 从中可见随着Cu含量的增大,相互间无烧结的孤立W颗粒数量。
