
湖南省邵阳市大祥区第一中学高二数学理下学期期末试卷含解析.docx
13页湖南省邵阳市大祥区第一中学高二数学理下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,直三棱柱ABC-A1B1C1,,且,则直线与直线所成角的余弦值为( ). A. B. C. D.参考答案:A如图所示,建立空间直角坐标系.不妨取,则.∴,,,,∴,.∴.故选.2. “ ”是“曲线表示椭圆”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D. 既不充分也不必要条件参考答案:B3. 已知是异面直线,直线∥直线,那么与( )A.一定是异面直线 B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线参考答案:C略4. 已知双曲线的离心率为,则此双曲线的渐近线方程为( )A. B. C. D.参考答案:C5. 在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是( )A. B. C. D.参考答案:C6. 已知 ,猜想的表达式为( )(A); (B); (C); (D)参考答案:B略7. 已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是( )A.(x≠0) B.(x≠0)C.(x≠0) D.(x≠0)参考答案:B【考点】椭圆的定义.【专题】计算题.【分析】根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.【解答】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.8. 在等差数列项的和等于 ( )A. B. C. D. 参考答案:C9. 若都是实数,则“”是“”的( A )A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 参考答案:10. 已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为 ( ).A. B. C. D.参考答案:D略二、 填空题:本大题共7小题,每小题4分,共28分11. 函数的单调递减区间为 .参考答案:(0,)12. 已知函数的图像如图所示,则 参考答案:013. 已知平面向量且,则= 参考答案:(3,1)14. 已知问量, 的夹角为60°,则= .参考答案: 15. 在平面直角坐标系xOy中,已知双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直,则实数a= .参考答案:2【考点】双曲线的简单性质.【分析】先求出直线方程的斜率,并表示出双曲线方程的渐近线,再由双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直可知两直线的斜率之积等于﹣1,可求出a的值.【解答】解:直线l:2x﹣y+1=0的斜率等于2,双曲线C:﹣y2=1(a>0)的渐近线可以表示为:y=±又因为双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直,∴2×(﹣)=﹣1,∴a=2,故答案为216. 记等差数列的前n项的和为,利用倒序求和的方法得:;类似地,记等比数列的前n项的积为,且,试类比等差数列求和的方法,将表示成首项、末项与项数n的一个关系式,即= .参考答案:17. 点A(2,﹣1)到直线x﹣2y+1=0的距离是 .参考答案:【考点】点到直线的距离公式.【专题】计算题;转化思想;综合法;直线与圆.【分析】利用点到直线的距离公式求解.【解答】解:点A(2,﹣1)到直线x﹣2y+1=0的距离:d==.故答案为:.【点评】本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 如图,三棱柱ABC﹣A1B1C1的侧棱垂直于底面,底面边长和侧棱长均为2,D,D1分别是BC,B1C1的中点.(1)求证:AD⊥C1D;(2)求证:平面ADC1∥平面A1D1B.参考答案:【考点】平面与平面平行的判定;空间中直线与直线之间的位置关系.【专题】数形结合;综合法;空间位置关系与距离.【分析】(1)线面垂直的判定定理证明即可;(2)根据面面平行的判定定理证明即可.【解答】(1)证明:∵底面边长均为2,D是BC中点,∴AD⊥BC﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,AD?平面ABC,∴AD⊥BB1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵BC?平面B1BCC1,BB1?平面B1BCC1,BC∩BB1=B,∴AD⊥平面B1BCC1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵DC1?面B1BCC1,∴AD⊥DC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)证明:连结A1C交于AC1O,连结DO,如图示:∵O是正方形ACC1A1对角线的交点∴O为A1C中点∵D是BC的中点∴OD∥A1B,且OD?平面ADC1,A1B?平面ADC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴A1B∥平面ADC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵D,D1分别是BC,B1C1的中点,∴AA1∥DD1,AA1=DD1,∴四边形AA1D1D是平行四边形∴AD∥A1D1﹣﹣﹣﹣﹣∵A1D1?平面ADB1,AD?平面ADB1,∴A1D1∥平面ADB1﹣﹣﹣﹣﹣﹣﹣﹣﹣∵A1D1∩A1B=A1,∴平面ADC1∥平面A1D1B﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查了线面垂直的判定定理以及面面平行的判定定理,考查数形结合思想,是一道中档题.19. (本小题满分10分) 求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率和渐近线方程。
参考答案: 略20. 已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.参考答案:【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】(1)当a=1时,f(x)=lnx﹣,f′(x)=+=,由此能推导出f(x)在(0,+∞)上是增函数.(2)将函数为增函数,转化为导函数大于等于0恒成立,分离出参数a,求出a的范围.(3)对h(x)进行配方,讨论其最值问题,根据题意?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,只要要求g(x)max≥h(x)max,即可,从而求出m的范围.【解答】解:(1)当a=1时,f(x)=lnx﹣,∴f′(x)=+=,x>0.∵x>0,∴f′(x)>0,∴f(x)在(0,+∞)上是增函数.(2)∵f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,a>0.∴g(x)=ax﹣﹣5lnx,x>0∴g′(x)=a+﹣=,若g′(x)>0,可得ax2﹣5x+a>0,在x>0上成立,∴a>=,∵≤=(x=1时等号成立),∴a≥.(3)当a=2时,g(x)=2x﹣﹣5lnx,h(x)=x2﹣mx+4=(x﹣)2+4﹣,?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,∴要求g(x)的最大值,大于h(x)的最大值即可,g′(x)==,令g′(x)=0,解得x1=,x2=2,当0<x<,或x>2时,g′(x)>0,g(x)为增函数;当<x<2时,g′(x)<0,g(x)为减函数;∵x1∈(0,1),∴g(x)在x=处取得极大值,也是最大值,∴g(x)max=g()=1﹣4+5ln2=5ln2﹣3,∵h(x)=x2﹣mx+4=(x﹣)2+4﹣,若m≤3,hmax(x)=h(2)=4﹣2m+4=8﹣2m,∴5ln2﹣3≥8﹣2m,∴m≥,∵>3,故m不存在;若m>3时,hmax(x)=h(1)=5﹣m,∴5ln2﹣3≥5﹣m,∴m≥8﹣5ln2,实数m的取值范围:m≥8﹣5ln2;21. 已知函数,(1)若是的极值点,求在[1,a]上的最小值和最大值;(2)若在(1,4)上是单调递增函数,求实数a的取值范围.参考答案:(1)函数,可得…(2分)可知在上单调递减,在上单调递增,4分且,所以…(6分)(2)函数&分参可得…(8分),,即…(12分)22. (10分)已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.参考答案:。












