
2018年—2022年江苏高中数学高考真题五年合集.docx
139页2018年—2022年江苏高中数学高考真题五年合集2022年江苏高中数学高考试卷与答案2021年江苏高中数学高考试卷与答案2020年江苏高中数学高考试卷与答案2019年江苏高中数学高考试卷与答案2018年江苏高中数学高考试卷与答案2022年普通高等学校招生全国统一考试数 学一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合则=2.若则C.1D.23.在中,点D在边AB上,记则4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库知该水库水位为海拔148.5m时,相应水面的面积为水位为海拔157.5m时,相应水面的面积为将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为6.记函数的最小正周期为T,若 则的图像关于点中心对称,则A.1D.37.设则8.已知正四棱锥的侧棱长为,其各顶点都在同一球面上.若该球的体积为36,且则该正四棱锥体积的取值范围是D.[18, 27]二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要全部选对的得5分,部分选对的得2分,有选错的得0分9.已知正方体则A.直线与所成的角为B.直线与所成的角为C.直线与平面所成的角为D.直线与平面ABCD所成的角为10.已知函数则A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线的对称中心D.直线是曲线的切线11.已知O为坐标原点,点A(1,1)在抛物线C:上,过点的直线交C于P,Q两点,则A.C的准线为B.直线AB与C相切12.已知函数及其导函数的定义域均为R,记若均为偶函数,则C.三、填空题:本题共4小题,每小题5分,共20分的展开式中的系数为 ________ (用数字作答).14.写出与圆和都相切的一条直线的方程___________. .15.若曲线有两条过坐标原点的切线,则a的取值范围是_________.16.已知椭圆C:C的上顶点为A,两个焦点为离心率为,过且垂直于的直线与C交于D,E两点,则的周长是__________. .四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.(10分)记为数列的前n项和,已知是公差为,的等差数列.(1)求的通项公式;(2)证明:18.(12分)记的内角A,B,C的对边分别为a,b,c,已知(1)若求B;(2)求的最小值.19.(12分)如图,直三棱柱的体积为4,'的面积为(1)求A到平面的距离;(2)设D为的中点,平面平面求二面角的正弦值.20.(12分)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在己患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(i)证明:(ii)利用该调查数据,给出的估计值,并利用(i)的结果给出R的估计值.P(K2 ≥ k)0.0500.0100.001K3.8416.63510.828附:,21.(12分)已知点A(2,1)在双曲线C:上,直线交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求的斜率;(2)若求的面积.22.(12分)已知函数和有相同的最小值.(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.绝密☆启用前试卷类型:A2022年普通高等学校招生全国统一考试(即江苏卷)数 学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则()A. B. C. D. 【答案】D【解析】【分析】求出集合后可求.详解】,故,故选:D2. 若,则()A. B. C. 1 D. 2【答案】D【解析】【分析】利用复数的除法可求,从而可求.【详解】由题设有,故,故,故选:D3. 在中,点D在边AB上,.记,则()A. B. C. D. 【答案】B【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D在边AB上,,所以,即,所以.故选:B.4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A. B. C. D. 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A. B. C. D. 【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,若两数不互质,不同的取法有:,共7种,故所求概率.故选:D.6. 记函数的最小正周期为T.若,且的图象关于点中心对称,则()A. 1 B. C. D. 3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所以,,所以.故选:A7. 设,则()A. B. C. D. 【答案】C【解析】【分析】构造函数,导数判断其单调性,由此确定大小.【详解】设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.8. 已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A. B. C. D. 【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知正方体,则()A. 直线与所成的角为 B. 直线与所成的角为C. 直线与平面所成的角为 D. 直线与平面ABCD所成的角为【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD10. 已知函数,则()A. 有两个极值点 B. 有三个零点C. 点是曲线的对称中心 D. 直线是曲线的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,,令得或,令得,所以在上单调递减,在,上单调递增,所以是极值点,故A正确;因,,,所以,函数在上有一个零点,当时,,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC11. 已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则()A. C的准线为 B. 直线AB与C相切C. D. 【答案】BCD【解析】【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD12. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则()A. B. C. D. 【答案】BC【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为,均为偶函数,所以即,,所以,,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,,故B正确,D错误;。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





