高中数学直线与方程知识点总结
直线与方程1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0°.2、 倾斜角的取值范围: 0°180°. 当直线l与x轴垂直时, = 90°.3、直线的斜率:一条直线的倾斜角(90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tan当直线l与x轴平行或重合时, =0°, k = tan0°=0;当直线l与x轴垂直时, = 90°, k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2, 那么一定有L1L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线经过点,且斜率为 2、直线的斜截式方程:已知直线的斜率为,且与轴的交点为 3.2.2 直线的两点式方程1、直线的两点式方程:已知两点其中 y-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中3.2.3 直线的一般式方程1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 得 x=-2,y=2所以L1与L2的交点坐标为M(-2,2)3.3.2 两点间距离两点间的距离公式3.3.3 点到直线的距离公式1点到直线距离公式:点到直线的距离为:2、两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,:,则与的距离为 直线与方程公式整理(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°180°(2)直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(6)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则 (8)点到直线距离公式:一点到直线的距离(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。例1、在ABC中,已知A(5,2)、B(7,3),且AC边的中点M在y轴上,BC边的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程解:(1)设点C的坐标为(x,y),则有0,0,x5,y3.即点C的坐标为(5,3)(2)由题意知,M(0,),N(1,0),直线MN的方程为x1,即5x2y50.例2、已知两点A(1,2),B(m,3)(1)求直线AB的方程;(2)已知实数m1,1,求直线AB的倾斜角的取值范围解:(1)当m1时,直线AB的方程为x1,当m1时,直线AB的方程为y2(x1)(2)当m1时,;当m1时,m1,0)(0,k(,),)(,综合知,直线AB的倾斜角的取值范围为,例3、为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图所示),另外,AEF内部有一文物保护区不能占用,经测量AB100 m,BC80 m,AE30 m,AF20 m,应如何设计才能使草坪面积最大?解:建立如图所示直角坐标系,则E(30,0),F(0,20),于是,线段EF的方程是1(0x30),在线段EF上取点P(m,n),作PQBC于点Q,PRCD于点R,设矩形PQCR的面积为S,则:S|PQ|·|PR|(100m)(80n),因为1,所以n20(1),所以S(100m)(8020m)(m5)2(0m30),于是,当m5时,S有最大值,这时.答:当草坪矩形的两边在BC,CD上,一个顶点在线段EF上,且这个顶点分EF成51时,草坪面积最大