好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学校本课程5..docx

8页
  • 卖家[上传人]:Baige****0346
  • 文档编号:274748197
  • 上传时间:2022-04-08
  • 文档格式:DOCX
  • 文档大小:32.93KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    •     高中数学校本课程5.    第五讲数学解题思维过程数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动在数学中,通常可将解题过程分为四个阶段:第一阶段是审题包括认清习题的条件和要求,深入分析条件中的各个元素, 在复杂的记忆系统中找出需要的知识信息,建立习题的条件、结论与知识和经验之间的联系,为解题作好知识上的准备第二阶段是寻求解题途径有目的地进行各种组合的试验, 尽可能将习题化为已知类型,选择最优解法,选择解题方案,经检验后作修正,最后确定解题计划第三阶段是实施计划将计划的所有细节实际地付诸实现,通过与已知条件所选择的根据作对比后修正计划,然后着手叙述解答过程的方法,并且书写解答与结果第四阶段是检查与总结求得最终结果以后,检查并分析结果探讨实现解题的各种方法,研究特殊情况与局部情况,找出最重要的知识将新知识和经验加以整理使之系统化所以:第一阶段的理解问题是解题思维活动的开始第二阶段的转换问题是解题思维活动的核心, 是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程第三阶段的计划实施是解决问题过程的实现, 它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

      第四阶段的反思问题往往容易为人们所忽视, 它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始通过以下探索途径来提高解题能力:(1研究问题的条件时, 在需要与可能的情况下, 可画出相应图形或思路图帮助思考因为这意味着你对题的整个情境有了清晰的具体的了解2清晰地理解情境中的各个元素; 一定要弄清楚其中哪些元素是给定了的, 即已知的,哪些是所求的,即未知的3深入地分析并思考习题叙述中的每一个符号、术语的含义, 从中找出习题的重要元素,要图中标出(用直观符号已知元素和未知元素,并试着改变一下题目中(或图中各元素的位置,看看能否有重要发现4尽可能从整体上理解题目的条件, 找出它的特点, 联想以前是否遇到过类似题目5仔细考虑题意是否有其他不同理解题目的条件有无多余的、互相矛盾的内容?是否还缺少条件?(6认真研究题目提出的目标通过目标找出哪些理论的法则同题目或其他元素有联系7如果在解题中发现有你熟悉的一般数学方法, 就尽可能用这种方法的语言表示题的元素,以利于解题思路的展开以上途径特别有利于开始解题者能迅速“登堂入室”,找到解题的起步点在制定计划寻求解法阶段,最好利用下面这套探索方法:(1设法将题目与你会解的某一类题联系起来。

      或者尽可能找出你熟悉的、最符合已知条件的解题方法2记住:题的目标是寻求解答的主要方向在仔细分析目标时即可尝试能否用你熟悉的方法去解题3解了几步后可将所得的局部结果与问题的条件、结论作比较用这种办法检查解题途径是否合理,以便及时进行修正或调整4尝试能否局部地改变题目, 换种方法叙述条件, 故意简化题的条件 (也就是编拟条件简化了的同类题再求其解再试试能否扩大题目条件 (编一个更一般的题目,并将与题有关的概念用它的定义加以替代5分解条件,尽可能将分成部分重新组合,扩大骒条件的理解6尝试将题分解成一串辅助问题,依次解答这些辅助问题即可构成所给题目的解7研究题的某些部分的极限情况,考察这样会对基本目标产生什么影响8改变题的一部分,看对其他部分有何影响;依据上面的“影响”改变题的某些部分所出现的结果,尝试能否对题的目标作出一个“展望”9 万一用尽方法还是解不出来,你就从课本中或科普数学小册子中找一个同类题,研究分析其现成答案,从中找出解题的有益启示数学解题的技巧为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

      基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解从结构上来分析,任何一道解答题,都包含条件和结论(或问题两个方面因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题以及它们的联系方式上多下功夫常用的途径有:(一、充分联想回忆基本知识和题型 :按照波利亚的观点, 在解决问题之前, 我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题二、全方位、多角度分析题意 :对于同一道数学题,常常可以不同的侧面、不同的角度去认识因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向三恰当构造辅助元素 :数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题之间,也存在着多种联系方式因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题的内在联系,把陌生题转化为熟悉题。

      数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体,构造算法,构造多项式,构造方程(组,构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等二、简单化策略所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题简单化是熟悉化的补充和发挥一般说来,我们对于简单问题往往比较熟悉或容易熟悉因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已解题中,实施简单化策略的途径是多方面的,常用的有 : 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等1、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题, 经过适当组合抽去中间环节而构成的因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径2、分类考察讨论:在些数学题,解题的复杂性,主要在于它的条件、结论(或问题包含多种不易识别的可能情形对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

      3、简单化已知条件:有些数学题,条件比较抽象、复杂,不太容易入手这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用4、恰当分解结论:有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来, 这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题三、直观化策略 :所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路一、图表直观:有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索二、图形直观:有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径三、图象直观:不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性, 常常能以简驭繁,获取简便,巧妙的解法。

      四、特殊化策略所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径五、一般化策略所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题六、整体化策略所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手, 对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法七、间接化策略所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题的反面进行思考,以便化难为易解出原题  -全文完-。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.