好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

上海市延安中学2024届高二数学第一学期期末复习检测试题含解析.doc

17页
  • 卖家[上传人]:zht****990
  • 文档编号:377619215
  • 上传时间:2024-01-23
  • 文档格式:DOC
  • 文档大小:720.50KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 上海市延安中学2024届高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设分别为圆和椭圆上的点,则两点间的最大距离是A. B.C. D.2.椭圆的长轴长是短轴长的2倍,则离心率( )A. B.C. D.3.已知函数的导函数满足,则()A. B.C.3 D.44.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为( )A B.C. D.5.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日6.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为( )A. B.C. D.7.已知对任意实数,有,且时,则时A. B.C. D.8.若函数有两个零点,则实数a的取值范围是()A. B.C. D.9.已知向量,且与互相垂直,则k=()A. B.C. D.10.若向量,,,则( )A. B.C. D.11.已知圆与直线至少有一个公共点,则的取值范围为( )A. B.C. D.12.已知正数x,y满足,则取得最小值时()A. B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。

      13.已知,若在区间上有且只有一个极值点,则a的取值范围是______14.已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______15.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.16.已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围18.(12分)已知离心率为的椭圆 经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.19.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.20.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)21.(12分)已知椭圆的离心率为,且点在C上.(1)求椭圆C的标准方程;(2)设,为椭圆C的左,右焦点,过右焦点的直线l交椭圆C于A,B两点,若内切圆的半径为,求直线l的方程.22.(10分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、D【解析】转化为圆心到椭圆上点的距离的最大值加(半径).【详解】设,圆心为,则,当时,取到最大值,∴最大值为故选:D.【点睛】本题考查圆上点与椭圆上点的距离的最值问题,解题关键是圆上的点转化为圆心,利用圆心到动点距离的最值加(或减)半径得出结论2、D【解析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【详解】∵,∴,故,故选:D3、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C4、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.5、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C6、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.7、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性8、C【解析】函数有两个零点等价于方程有两个根,等价于与图象有两个交点,通过导数分析的单调性,根据图象即可求出求出的范围.【详解】函数有两个零点,方程有两个根,,分离参数得,与图象有两个交点,令,,令,解得当时,,在单调递增,当时,,在单调递减,且在处取得极大值及最大值,可以画出函数的大致图象如下:观察图象可以得出.故选:C.【点睛】本题主要考查函数零点的应用,构造函数求函数的导数,利用函数极值和导数之间的关系是解决本题的关键.9、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.10、A【解析】根据向量垂直得到方程,求出的值.【详解】由题意得:,解得:.故选:A11、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C12、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B二、填空题:本题共4小题,每小题5分,共20分。

      13、【解析】求导得,进而根据题意在上有且只有一个变号零点,再根据零点的存在性定理求解.【详解】解:,∵在区间上有且只有一个极值点,∴在上有且只有一个变号零点,∴,解得∴a的取值范围是.故答案为:14、##【解析】设,则,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解【详解】解:设,则,甲:由可得,则,乙:由可得:,丙:由可得,即,所以,若,则,则不成立,,则,解得或,所以甲,丙正确,乙错误,此时或,又复数对应的点在复平面第一象限内,所以,故答案为:15、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:716、 ①. ②.【解析】过作,交于点,作,交于点,由向量共线定理可得;再由角平分线性质定理和双曲线的定义、结合余弦定理和离心率公式,可得所求值【详解】解:过作交于点,作交于点,由,得,由角平分线定理;因为为的中点,所以,由双曲线的定义,,所以,,,在中,由余弦定理,所以.故答案为:;.【点睛】本题考查双曲线的定义、方程和性质,以及角平分线的性质定理和余弦定理的运用,考查方程思想和运算能力,属于中档题三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.18、(1);(2).【解析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,. ,点到直线的距离,的面积 ,当且仅当,即时等号成立.所以当时,面积的最大值为.【点睛】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.19、(1) (2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意,所以;【小问2详解】由(1)知,,所以在恒成立,即对任意恒成立.令,则.设,易得是增函数,所以,所以,所以函数在上为增函数,则,所以.20、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;21、(1)(2)或.【解析】(1)根据离心率可得的关系,再将的坐标代入方程后可求,从而可得椭圆的方程.(2)设直线的方程为,,结合内切圆的半径为可得,联立直线方程和椭圆方程,消元后结合韦达定理可得关于的方程,求出其解后可得直线方程.【小问1详解】因为椭圆的离心率为,故可设,故椭圆方程为,代入得,故,故椭圆方程为:.【小问2详解】的周长为,故.设,由题设可得直线与轴不重合,。

      点击阅读更多内容
      相关文档
      黑吉辽蒙金太阳2025-2026学年高三上学期9月开学联考地理试卷.docx 【8道第一次月考】安徽省淮北市五校联考+2024-2025学年八年级10月月考道德与法治试卷.docx 黑吉辽蒙金太阳2025-2026学年高三上学期9月开学联考化学试卷.docx 【8道第一次月考】安徽省六安市皋城中学2024-2025学年八年级10月月考道德与法治试卷.docx 江苏省南通市海安市2025-2026学年高三上学期开学测试物理试卷.docx 【8历第一次月考】安徽省亳州市利辛县2024-2025学年部编版八年级上学期第一次月考试卷(含解析).docx 安徽省华师联盟2026届高三上学期9月开学测试化学试卷.docx 江苏省南通市海安市2025-2026学年高三上学期开学测试地理试卷.docx 【8历第一次月考】安徽省阜阳市临泉县2024-2025学年部编版八年级上学期第一次月考历史试卷(含解析).docx 江苏省南通市海安市2025-2026学年高三上学期开学测试语文试卷.docx 【8道第一次月考】安徽省六安市霍邱县+2024-2025学年八年级上学期10月月考道德与法治试卷.docx 江苏省南通市海安市2025-2026学年高三上学期开学测试历史试卷.docx 【8历第一次月考】安徽省蚌埠市蚌山区2024-2025学年部编版八年级上学期10月月考历史试题(含解析).docx 黑吉辽蒙金太阳2025-2026学年高三上学期9月开学联考语文试卷.docx 黑吉辽蒙金太阳2025-2026学年高三上学期9月开学联考思想政治试卷.docx 【8道第一次月考】安徽省阜阳市临泉县2024-2025学年八年级上学期第一次月考道德与法治试卷.docx 黑吉辽蒙金太阳2025-2026学年高三上学期9月开学联考生物试卷.docx 江苏省南通市海安市2025-2026学年高三上学期开学测试化学试卷.docx 【8历第一次月考】安徽省池州市贵池区2024-2025学年八年级上学期第一次月考历史试卷(含解析).docx 安徽省华师联盟2026届高三上学期9月开学测试生物试卷.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.