好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2006年考研数学试题答案与解析(数学一).doc

12页
  • 卖家[上传人]:cn****1
  • 文档编号:502889651
  • 上传时间:2023-12-17
  • 文档格式:DOC
  • 文档大小:553.50KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2006年全国硕士研究生入学考试数学一真题解析一、 填空题(1)= 2 . ()(2)微分方程的通解是,这是变量可分离方程.(3)设是锥面的下侧,则 补一个曲面上侧∴ (为锥面和平面所围区域)(为上述圆锥体体积)而(∵在上:)(4)(5)设A= 2 1 ,2阶矩阵B 满足BA=B +2E,则|B|= . -1 2解:由BA=B +2E化得B(A-E)=2E,两边取行列式,得 |B||A-E|=|2E|=4,计算出|A-E|=2,因此|B|=2.(6)二、 选择题(7)设函数具有二阶导数,且,,为自变量在处的增量,与分别为在点处对应的增量与微分.若,则(11)设a1,a2,…,as 都是n维向量,A是m´n矩阵,则( )成立.(A) 若a1,a2,…,as线性相关,则Aa1,Aa2,…,Aas线性相关.(B) 若a1,a2,…,as线性相关,则Aa1,Aa2,…,Aas线性无关.(C) 若a1,a2,…,as线性无关,则Aa1,Aa2,…,Aas线性相关.(D) 若a1,a2,…,as线性无关,则Aa1,Aa2,…,Aas线性无关.解: (A)本题考的是线性相关性的判断问题,可以用定义解.若a1,a2,…,as线性相关,则存在不全为0的数c1,c2,…,cs使得 c1a1+c2a2+…+csas=0,用A左乘等式两边,得c1Aa1+c2Aa2+…+csAas=0,于是Aa1,Aa2,…,Aas线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1. a1,a2,…,as 线性无关Û r(a1,a2,…,as )=s.2. r(AB)£ r(B).矩阵(Aa1,Aa2,…,Aas)=A( a1, a2,…,as ),因此r(Aa1,Aa2,…,Aas)£ r(a1, a2,…,as ).由此马上可判断答案应该为(A).(12)设A是3阶矩阵,将A的第2列加到第1列上得B,将B的第1列的-1倍加到第2列上得C.记 1 1 0 P= 0 1 0 ,则 0 0 1(A) C=P-1AP. (B) C=PAP-1. (C) C=PTAP. (D) C=PAPT. 解: (B)用初等矩阵在乘法中的作用得出B=PA , 1 -1 0C=B 0 1 0 =BP-1= PAP-1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B) P(AB)=P(A)+P(B)-P(AB)=P(A)应选C(14)依题:          因 即 所以 应选A三、 解答题(18)设函数内具有二阶导数,且满足等式(I)验证 (II)若 求函数证:(I) (II)令 (19)设在上半平面内,函数具有连续偏导数,且对任意都有证明:对D内任意分段光滑的有向简单闭曲线L, 都有.证:把得:令 ,则再令 所给曲线积分等于0的充分必要条件为今 要求 成立,只要我们已经证明,,于是结论成立.(20)已知非齐次线性方程组 x1+x2+x3+x4=-1, 4x1+3x2+5x3-x4=-1, ax1+x2+3x3+bx4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A的秩为2.② 求a,b的值和方程组的通解. 解:① 设a1,a2,a3是方程组的3个线性无关的解,则a2-a1,a3-a1是AX=0的两个线性无关的解.于是AX=0的基础解系中解的个数不少于2,即4-r(A)³2,从而r(A)£2.又因为A的行向量是两两线性无关的,所以r(A)³2.两个不等式说明r(A)=2.② 对方程组的增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1(A|b)= 4 3 5 -1 -1 ® 0 –1 1 –5 3 , a 1 3 b 1 0 0 4-2a 4a+b-5 4-2a 由r(A)=2,得出a=2,b=-3.代入后继续作初等行变换: 1 0 2 -4 2® 0 1 -1 5 -3 . 0 0 0 0 0得同解方程组 x1=2-2x3+4x4, x2=-3+x3-5x4,求出一个特解(2,-3,0,0)T和AX=0的基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T+c1(-2,1,1,0)T+c2(4,-5,0,1)T, c1,c2任意.(21) 设3阶实对称矩阵A的各行元素之和都为3,向量a1=(-1,2,-1)T, a2=(0,-1,1)T都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵L,使得 Q TAQ=L. 解:① 条件说明A(1,1,1)T=(3,3,3)T,即 a0=(1,1,1)T是A的特征向量,特征值为3.又a1,a2都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于a1,a2线性无关, 特征值0的重数大于1.于是A的特征值为3,0,0.属于3的特征向量:ca0, c¹0.属于0的特征向量:c1a1+c2a2, c1,c2不都为0.② 将a0单位化,得h0=(,,)T.对a1,a2作施密特正交化,的h1=(0,-,)T, h2=(-,,)T.作Q=(h0,h1,h2),则Q是正交矩阵,并且 3 0 0 Q TAQ=Q-1AQ= 0 0 0 . 0 0 0 (22)随机变量的概率密度为,令,为二维随机变量的分布函数.(Ⅰ)求的概率密度;(Ⅱ)解:(Ⅰ) ; .所以:这个解法是从分布函数的最基本的概率定义入手,对y进行适当的讨论即可,在新东方的班里我也经常讲到,是基本题型.(Ⅱ).(23)设总体的概率密度为,其中是未知参数(0<<1).为来自总体的简单随机样本,记N为样本值中小于1的个数.求的最大似然估计.解:对样本按照<1或者≥1进行分类:<1,≥1.似然函数,在<1,≥1时,,,所以.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线 的斜渐近线方程为 _____________.(2)微分方程满足的解为. ____________.(3)设函数,单位向量,则=.________.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则____________.(5)设均为3维列向量,记矩阵 ,,如果,那么 ..(6)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则f(x)在内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(A) F(x)是偶函数f(x)是奇函数. (B) F(x)是奇函数f(x)是偶函数.(C) F(x)是周期函数f(x)是周期函数. (D) F(x)是单调函数f(x)是单调函数. [ ](9)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有(A) . (B) .(C) . (D) . [ ](10)设有三元方程,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y). (B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y). (D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ ](12)设A为n()阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则(A) 交换的第1列与第2列得. (B) 交换的第1行与第2行得. (C) 交换的第1列与第2列得. (D) 交换的第1行与第2行得. [ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设为来自总体N(0,1)的简单随机样本,为样本均值,为样本方差,则(A) (B) (C) (D) [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设,表示不超过的最大整数. 计算二重积分(16)(本题满分12分)求幂级数的收敛区间与和函数f(x).(17)(本题满分11分) 如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线与分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I)存在 使得;(II)存在两个不同的点,使得(19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有;(II)求函数的表达式.(20)(本题。

      点击阅读更多内容
      相关文档
      国开2025年秋季《形势与政策》大作业答案.docx 国开2025年秋季《形势与政策》专题测验1-5答案.docx 2025年辽宁普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年广西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年6月浙江普通高中学业水平选择性考试地理试卷(原卷+答案).doc 2025年江西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年内蒙古普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年贵州普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年安徽普通高中学业水平选择性考试生物试卷(原卷+答案).doc 2025年辽宁普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年1月云南省高考适应性测试物理试卷(原卷+答案).doc 2025年江苏普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年甘肃普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年陕西普通高中学业水平选择性考试生物试卷1(原卷+答案).doc 2025年全国二卷普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年黑龙江普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年江西普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试英语试卷(原卷+答案).doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.