
初二全等三角形全攻略.doc
13页初二全等三角形全攻略专题一 全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种:1.三边对应相等的两个三角形全等(简写成“SSS”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”)3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS”)而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?常胜教育 赵老师 :13752715509 996464280(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC.那么图中全等的三角形有___对.分析:由CE⊥AB,BD⊥AC,得∠AEO=∠ADO=90º.由AO平分∠BAC,得∠EAO=∠DAO.又AO为公共边,所以△AEO≌△ADO.所以EO=DO,AE=AD.又∠BEO=∠CDO=90º,∠BOE=∠COD,所以△BOE≌△COD.由AE=AD,∠AEO=∠ADO=90º,∠BAC为公 共角,所以△EAC≌DAO.所以AB=AC.又∠EAO=∠DAO, AO为公共边,所以△ABO≌△ACO. 图1所以图中全等的三角形一共有4对.百度hi 牛顿罗庚 渤海初中数学答疑群1306344(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)_____.分析:要使△ABC≌△ADE,注意到∠1=∠2,所以∠1+∠DAC=∠2+∠DAC,即∠BAC=∠EAC.要使△ABC≌△ADE,根据SAS可知只需AC=AE 图2即可;根据ASA可知只需∠B=∠D;根据AAS可知只需∠C=∠E.故可添加的条件是AC=AE或∠B=∠D或∠C=∠E.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3 已知:如图3,AB=AC,∠1=∠2.求证:AO平分∠BAC.分析:要证AO平分∠BAC,即证∠BAO=∠BCO,要证∠BAO=∠BCO,只需证∠BAO和∠BCO所在的两个三角形全等.而由已知条件知,只需再证明BO=CO即可.证明:连结BC.因为AB=AC,所以∠ABC=∠ACB.因为∠1=∠2,所以∠ABC-∠1=∠ACB-∠2. 图3即∠3=∠4,所以BO=CO.因为AB=AC,BO=CO,AO=AO,所以△ABO≌△ACO.所以∠BAO=∠CAO,即AO平分∠BAC.(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形. 常年网上家教招收初中学生,欢迎联系例4 已知:如图4,在Rt△ABC中,∠ACB=90º,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF.求证:∠ADC=∠BDF.证明:过B作BG⊥BC交CF延长线于G,所以BG∥AC.所以∠G=∠ACE.因为AC⊥BC,CE⊥AD,所以∠ACE=∠ADC.所以∠G=∠ADC.因为AC=BC,∠ACD=∠CBG=90º,所以 图4△ACD≌△CBG.所以BG=CD=BD.因为∠CBF=∠GBF=45º,BF=BF,所以△GBF≌△DBF.所以∠G=∠BDF.所以∠ADC=∠BDF.所以∠ADC=∠BDF.1. 说明:截长补短法(通常用来证明线段和差相等)“截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等 .例1.如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E,ABCDFEG图(1)求证:AB+BE=AC.解法(一)(补短法或补全法)延长AB至F使AF=AC,解法(二)(截长法或分割法)在AC上截取AG=AB,例2、已知:如图1-1所示,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A + ∠C = 180°例3 已知:AD为△ABC的角平分线,AB>AC,求证:AB—AC>BD—DC。
1:在RT三角形ABC中,角BAC=90度,AB=AC,BD平分角ABC,CE垂直于BD,求证BD=2CE.(要求:不能用补短法,只能用截长法)2、已知,如图.在三角形ABC中,角C等于2角B,角1等于角2,求证AB=AC+CD(要求:不能用截长法,只能用补短法)3、已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°4、如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠B2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线. 例 △ABC中,∠BAC=60°,∠C=40°AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q, 求证:AB+BP=BQ+AQ.说明:⑴本题也可以在AB截取AD=AQ,连OD,构造全等三角形,即“截长补短法”. ⑵本题利用“平行法”解法也较多,举例如下:① 如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO来解决.② 如图(3),过O作DE∥BC交AB于D,交AC于E,则△ADO≌△AQO,△ABO≌△AEO来解决.③ 如图(4),过P作PD∥BQ交AB的延长线于D,则△APD≌△APC来解决. ④ 如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP来解决.(本题作平行线的方法还很多,感兴趣的同学自己研究).ABCPQ图(5)DOABCPQ图(4)DOOABCPQD图(2)ABCPQDE图(3)O 3.旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
ABCPD例.已知:如图(6),P为△ABC内一点,且PA=3,PB=4,PC=5,求∠APB的度数.分析:直接求∠APB的度数,不易求,由PA=3,PB=4,PC=5,联想到构造直角三角形. 4.倍长中线法题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内EABCDFH例1.如图(7)AD是△ABC的中线,BE交AC于E,交AD于F,且AE=BE.求证:AC=BF 例2.如图,点D、E三等分△ABC的BC边,求证:AB+AC>AD+AE例3.如图,△ABC中,D为BC中点,AB=5,AD=6,AC=13求证:AB⊥AD5.翻折法 若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形.ABCDEGF例1.如图(8)已知:在△ABC中,∠A=45º, AD⊥BC,若BD=3,DC=2, 求:△ABC的面积.例2.ABCD如图,在△ABC中,AD⊥BC,∠ABC=2∠C求证:AB+BD=CD例3.在△ABC中,∠1=∠2,∠ABC=2∠C求证:AB+BD=AC 练习1、如图5,在中,,求证:。
练习2、已知:如图6,正方形ABCD,,Q在DC上,P在BC上求证:PA=PB+DQ1.如图1,已知BD平分∠ABC,AC=BC,∠C=90°,AE⊥BD于E,判断AE与BD的数量关系并证明. 2.如图3,在△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF 图 3(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A,B两点间的距离﹒请你用学过的数学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒ 图5 (3)计算A、B的距离(写出求解或推理过程,结果用字母表示)﹒分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O,在AO的延长线上取一点C,并测得OC=OA,在BO的延长线上取一点D,并测得OD=OB,这时测得CD的长为,则AB的长就是.第(3)题易证△AOB≌△COD,所以AB=CD,测得CD的长即可得AB的长.解:(1。
