
广西桂林中学2022学年高三一诊考试数学试卷(含解析).doc
20页2022学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是( )A.①② B.①③ C.①③④ D.①②④2.如图,棱长为的正方体中,为线段的中点,分别为线段和 棱 上任意一点,则的最小值为( )A. B. C. D.3.设,则“ ”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知向量,则向量在向量方向上的投影为( )A. B. C. D.5.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列6.执行如图所示的程序框图,则输出的结果为( )A. B. C. D.7.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P28.函数的定义域为,集合,则( )A. B. C. D.9.函数(其中是自然对数的底数)的大致图像为( )A. B. C. D.10.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )A. B.C. D.11.若函数函数只有1个零点,则的取值范围是( )A. B. C. D.12.已知复数为虚数单位) ,则z 的虚部为( )A.2 B. C.4 D.二、填空题:本题共4小题,每小题5分,共20分。
13.若函数恒成立,则实数的取值范围是_____.14.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).15.抛物线上到其焦点的距离为的点的个数为________.16.设为数列的前项和,若,则____三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.18.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求,的值;(Ⅱ)若,求证:对于任意,.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为. (1)求线段长的最小值; (2)求点的轨迹方程.20.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,. (1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.21.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.22.(10分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、C【答案解析】①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【题目详解】①:当变为时, 不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【答案点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.2、D【答案解析】取中点,过作面,可得为等腰直角三角形,由,可得,当时, 最小,由 ,故,即可求解.【题目详解】取中点,过作面,如图:则,故,而对固定的点,当时, 最小.此时由面,可知为等腰直角三角形,,故.故选:D【答案点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.3、C【答案解析】根据充分条件和必要条件的定义结合对数的运算进行判断即可.【题目详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【答案点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.4、A【答案解析】投影即为,利用数量积运算即可得到结论.【题目详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【答案点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.5、D【答案解析】由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题6、D【答案解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7、C【答案解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【题目详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.【答案点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.8、A【答案解析】根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【题目详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【答案点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.9、D【答案解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.10、C【答案解析】在等比数列中,由即可表示之间的关系.【题目详解】由题可知,等比数列中,且公比为2,故故选:C【答案点睛】本题考查等比数列求和公式的应用,属于基础题.11、C【答案解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【题目详解】有1个零点等价于与的图象有1个交点.记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得.所以切线斜率为,所以或.故选:C【答案点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.12、A【答案解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【题目详解】因为,所以z 的虚部为2.【答案点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.二、填空题:本题共4小题,每小题5分,共20分。
13、【答案解析】若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得题目详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【答案点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型14、21 3892 【答案解析】根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【题目详解】如图所示:正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【答案点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.15、【答案解析】设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【题目详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【答案点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.16、【答案解析】当时,由,解得,当时,,两式相减可得,即,可得数列是等比数列再求通项公式.【题目详解】当时,,即,当时,,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【答。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





