好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

微型仿生蠕动机器人驱动器及动力学建模研究.pdf

135页
  • 卖家[上传人]:w****i
  • 文档编号:115553378
  • 上传时间:2019-11-14
  • 文档格式:PDF
  • 文档大小:1.13MB
  • / 135 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 上海交通大学 博士学位论文 微型仿生蠕动机器人驱动器及动力学建模研究 姓名:卢秋红 申请学位级别:博士 专业:仪器科学与技术 指导教师:颜国正;丁国清 20040501 微型仿生蠕动机器人驱动器及动力学建模研究 摘 要 随着科技的发展能够进入人体腔道进行微创或无创诊查或进入工业 管道进行故障检测系统的研究迫在眉睫 应用仿生学原理的微型仿生机器人 系统是解决这一问题的新途径 本论文从机器人的驱动单元件出发提出了新型 微型压电驱动器的设计原理详细论述了微型驱动器的结构设计实验研究动 力学建模及动态特性分析并在此基础上研究了微型蠕动机器人系统 论文针对目前微型机器人驱动方式存在的问题提出了利用内部构件之间的 摩擦力驱动的新型惯性摩擦式压电驱动原理基于此驱动原理设计出三种不 同结构形式的惯性摩擦式微型驱动器包括双压电型直线微驱动器单压电型 直线微驱动器和旋转微驱动器论述了它们的结构形式和驱动原理并做了相应 的实验研究实验结果证实了惯性摩擦式驱动原理的可行性揭示出电压信号 对驱动器运动的控制规律 论文研究了压电振子的机械振动模型和等效电路模型提出了采用粘滑模 型来模拟驱动器内部元件之间的摩擦力微观变化 建立了惯性摩擦式驱动器的 动力学分析模型 系统地对驱动器进行了动态特性研究理论分析结果与实验结 果符合很好 在对理论仿真结果与实验结果对比分析的基础上 得到了信号频率 驱动电压初始间隙等因素对驱动器运动速度的影响规律 论文还提出电磁压电结合型直线微驱动器论述了该驱动器的结构运动 机理及控制系统并进行了相应的实验研究分析了信号频率和驱动电压对驱动 器运动速度的影响另外在不同方向上的运动实验表明驱动器能够在导磁界面 上的任意方向上可靠运动 论文利用电磁场理论和压电陶瓷的动力学模型对电磁压电型直线驱动器 进行了动力学建模和仿真计算并与实验结果做了对比结果表明理论计算与 实验结果相符合根据理论计算和实验结果分析了信号频率驱动电压以及运 动方向对驱动器速度的影响趋势及内在原因 论文在驱动器研究成果的基础上模仿蚯蚓的运动特性提出了微型仿生蠕动 机器人多节蠕动原理 提出了多节蠕动机器人结构模型 并进行了运动实验研究 机器人依靠内部构件之间的摩擦力来驱动可以在光滑的界面或管道中运行 论文具有以下几个创新之处提出了采用内部构件之间摩擦力作为运动件驱 动力的新型惯性摩擦式压电驱动原理 基于此原理设计出新型直线微驱动器和 旋转微驱动器 推导出压电陶瓷的等效电路采用粘滑摩擦力模型模拟微观摩 擦力的变化建立了压电驱动器的动力学模型设计了电磁压电结合型直线微 驱动器并采用电磁场理论压电陶瓷的等效模型以及粘滑摩擦力模型建立了 驱动器的动力学分析模型模仿蚯蚓的运动方式完善了多节蠕动原理利用所研 制的驱动器构建了微型仿生多节蠕动机器人系统 论文所研究的新型驱动器具有结构简单尺寸微小运动易控的特点不仅 能够用作微型机器人驱动器也能用在微定位及纳米定位精密测量精密驱动 的机构当中 驱动器动力学模型的建立和动态特性的研究为有效可靠地控制和进 一步改进设计提供了理论依据 其动力学分析方法对其他驱动器的设计和分析也 具有参考价值 论文的研究成果为蠕动医用机器人的设计提供了新思路和理论参 考能够促进微型蠕动医用机器人的进一步实用化 关键词微型机器人仿生机器人压电陶瓷微驱动器多节蠕动 RESEARCH ON MINIATURE BIONIC CREEPING MEDICAL ROBOTIC SYSTEM AND DYNAMIC MODELLING ABSTRACT Along with the development of science and technology, it stares us in the face that to investigate mechanisms able to enter into the cavities of human to diagnose with minimal invasive or non-invasive, or able to enter into industrial pipes to do online fault detecting. The miniature bionic robot is a new way to solve the problem. The author produced two new microactuator types, discussed their design ideas, experiments and dynamic models, and then investigated the creeping robotic system in this dissertation. The inertia-friction piezoelectric driving method was advanced in this dissertatin firstly. Then the author designed three different forms of inertia-friction microactuator, including double PZT linear, single PZT linear and rotary microactuators. These microactuators are discussed detailedly in structure, driving mechanism and motion testing. The experimental results verified the feasibility of inertia-friction piezoelectric driving method, and opened out laws about control signals influencing on movements of piezoactuators. The author studied the mechanics vibration model and the equivalent model of PZT, applied the sick-slip friction model to simulate the microcosmic various frictional forces between the inner parts, and created the dynamic analysis model of the inertia-friction actuators. The actuator’s dynamic characteristics were analyzed using the dynamic model. The simulation results are agree well with the experimental ones. Through comparing and analyzing the simulation and experimental results, the fact that the movement of actuators is influenced by the frequency of signal, driving voltage amplitude and original gap between the contacted parts was discovered. Another actuator presented in this dissertation is a linear microactuator integrating electromagnetic effect and piezoelectric effect. The author discussed the structure, moving principle and control system of the EM-PZT actuator, did abundant experiments and analyzed how the frequency and voltage of driving signal influence on the actuator’s movement. The motion testing results of the actuator in various directions indicated that it has the capability to move stably along a magnetic conductor interface in any direction. In the dissertation, the dynamic modeling and simulation of EM-PZT linear actuator was done utilizing the theory of electromagnetism and piezoelectric dynamic model. The comparison of simulation and experimental results showed that they are coincident. According to the simulation and experimental results, how the movement of actuator is affected by frequency, driving voltage and directions were analyzed. Based on the researches of actuators, the author produced a miniature multi-joint creeping biorobot model imitating the motion features of earthworms, and studied its motion testing in this dissertation. The microrobot is driven by the inside friction of the mechanism and able to move on a slippery plane or inside a pipe. This dissertation has several originalities as follows: First, presented a novel inertia-friction piezoelectric driving principle; based this principle designed linear and rotary inertia-friction piezoactuators; and created the dynamic model of piezoactuator using stick-slip friction model and the equivalent circuit of piezoceramics. Second, designed the EM-PZT linear microactuator and created its dynamic model applying the electromagnetic theory, equivalent model of piezoceramics and stick-slip friction model. Thirdly, put forward the multi-。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.