好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

北师大九年级数学(上册)第一章:证明(直角三角形)课件.ppt

18页
  • 卖家[上传人]:精****科
  • 文档编号:210379133
  • 上传时间:2021-11-13
  • 文档格式:PPT
  • 文档大小:335KB
  • / 18 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 九年级数学(上册)第一章 证明(二),2.直角三角形(1) 勾股定理与它的逆定理的证明,驶向胜利的彼岸,勾股定理,如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理(pythagoras theorem).,驶向胜利的彼岸,勾股定理的证明,方法一: 拼图计算 方法二:割补法 方法三:赵爽的弦图 方法四:总统证法 方法五:青朱出入图 方法六:折纸法 方法七:拼图计算,这些证法你还能记得多少?你最喜欢哪种证法?,总统证法,驶向胜利的彼岸,这个证明方法出自一位总统, 1881年,伽菲尔德(J.A. Garfield )就任美国第二十任总统,在 1876 , 利用了梯形面积公式 图中三个三角形面积的和是 2ab/2c/2;梯形面积为(a+b)(a+b)/2; 比较可得:c2 = a2+b2 伽菲尔德的证法在数学史上被传为佳话,后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法 勾股定理不只是数学家爱好,魅力真大!,驶向胜利的彼岸,勾股定理的逆定理,如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形.,已知:如图(1),在ABC中,AC2+BC2=AB2. 求证:ABC是直角三角形.,驶向胜利的彼岸,逆定理的证明,证明:作Rt ABC使C =900,AC=AC,BC=BC(如图),则,已知:如图(1),在ABC中,AC2+BC2=AB2. 求证:ABC是直角三角形.,AC2+BC2=AB2(勾股定理).,AC2+BC2=AB2(已知), AC=AC,BC=BC(作图), AB2=AB2(等式性质)., AB=AB(等式性质)., ABC ABC(SSS)., C=C 900(全等三角形的对应边)., ABC是直角三角形(直角三角形意义).,几何的三种语言,驶向胜利的彼岸,勾股定理的逆定理 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形.,这是判定直角三角形的根据之一.,在ABC中 AC2+BC2=AB2(已知), ABC是直角三角形(如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形).,驶向胜利的彼岸,命题与逆命题,直角三角形两直角边的平方和等于斜边的平方.,如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形,观察上面两个命题,它们的条件与结论之间有怎样的关系?与同伴交流.,再观察下面三组命题:,如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角;,如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎;,三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等.,上面每组中两个命题的条件和结论之间也有类似的关系吗?与同伴进行交流.,驶向胜利的彼岸,命题与逆命题,在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.,你能写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗?,它们都是真命题吗?,想一想:一个命题是真命题,它逆命题是真命题还是假命题?,驶向胜利的彼岸,定理与逆定理,一个命题是真命题,它逆命题却不一定是真命题.,我们已经学习了一些互逆的定理,如: 勾股定理及其逆定理, 两直线平行,内错角相等;内错角相等,两直线平行.,你还能举出一些例子吗?,想一想: 互逆命题与互逆定理有何关系?,如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.,蓄势待发,驶向胜利的彼岸,老师提示: 你是否能将有关命题的知识予以整理.,说出下列合理的逆命题,并判断每对命题的真假:,四边形是多边形; 两直线平行,同旁内角互补; 如果ab=0,那么a=0,b=0.,请你举出一些命题,然后写出它的逆命题,并判断这些逆命题的真假.,学无止境,勾股定理是数学上有证明方法最多的定理有四百多种说明! 古今中外有许多人探索勾股定理的证明方法,不但有数学家,还有物理学家,甚至画家、政治家。

      如赵爽(中)、梅文鼎(中)、欧几里德(希腊)、辛卜松(英)、加菲尔德(美第二十届总统)等等其证明方法达数百种之多,这在数学史上是十分罕见的.,驶向胜利的彼岸,P18读一读: 勾股定理的证明.,学无止境,历时几千年的两个定理,牵动着世界上不知多少代亿万人们的心,前人以坚韧的毅力,开拓创新的精神谱写了科学知识宝库中探宝的光辉篇章,还有许多宝藏等待后人开采自然无限,创造永恒同学们要努力学习,提高自身素质,不辜负时代重托,将来为人类作出更大贡献驶向胜利的彼岸,P18读一读: 勾股定理的证明.,梦想成真,1.如图(单位:英尺),在一个长方体的房间里,一只蜘蛛在一面墙的正中间离天花板1英尺的A处,苍蝇则在对面墙的正中间离地板1英尺的B处. 试问:蜘蛛为了捕获苍蝇,需要爬行的最短距离是多少?,回味无穷,勾股定理: 如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理(pythagoras theorem). 勾股定理的逆定理: 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形. 命题与逆命题 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 定理与逆定理 如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.,习题1.4,驶向胜利的彼岸,1.如图,在ABC中,已知AB=13cm,BC=10cm,BC边上的中线AD=12cm. 求证:AB=AC.,证明:BD=CD,BC=10cm(已知), BD=5cm(等式性质)., AD2+BD2=122+52144+25=169, AB2=132=169,AD2+BD2=AB2.,D, 在ABD中,ABC是直角三角形(如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形).,在RtADC中,AC2=DC2+AD2=122+52144+25=169,AC2=AB2.,AB=AC(等式性质).,习题1.4,驶向胜利的彼岸,3.如图,正四棱柱的底面边长为5cm,侧棱长为8cm,一只蚂蚁欲从正四棱柱的底面上的点A沿棱柱侧面到点C1处吃食物,那么它需要爬行的最短路径是多少?,解:如下图,将四棱柱的侧面展开,连结AC1,AC=10cm,CC1=8cm(已知),老师提示:对于空间图形需要动手操作,将其转化为平面图形来解决.,答:蚂蚁需要爬行的最短路径是 cm.,结束寄语,严格性之于数学家,犹如道德之于人. 证明的规范性在于:条理清晰,因果相应,言必有据.这是初学证明者谨记和遵循的原则.,。

      点击阅读更多内容
      相关文档
      Unit 5 语法点:have got has got 在第三人称 It上的应用与否定形式 hasn't got.docx (三年级英语上册)Unit 7 配套听力材料(根据对话判断衣服、颜色和价格)原文与答案解析.docx 英语小作文“My Day”写作模板与高分范文(从早到晚时间线清晰).docx Unit 6 常见易错题分析:at night vs in the morning afternoon evening 介词搭配辨析.docx (三年级英语上册)Unit 8 “班级能力调查”活动表格与任务(用Can you...采访同学并做报告).docx Unit 6 “My day” 主题知识思维导图(整合时间、活动、句型).docx 《拒绝校园欺凌 珍惜同学情谊》主题班会教案.docx 语文四年级上册教案《爬山虎的脚》教案及反思.docx 语文七年级下册教案教案及反思.docx 语文一年级教案教案及反思.docx 苏教版三年级上册语文教案教案及反思.docx 语文二年级下册的教案教案及反思.docx 语文五年级上册教案教案及反思.docx 语文三年级教案教案及反思.docx (爆款潜力)如何写一篇“My Family”的英语小作文?范文与模板.docx 不同国家小学生的“一天”作息对比(中西文化差异).docx (三年级英语上册)英语小作文“My Favourite Clothes”“A Shopping Trip”写作模板与范文.docx Unit 5 配套听力材料(描述宠物特征)原文与答案解析.docx Unit 5 “Our pets” 主题知识思维导图(一图囊括所有单词、句型、语法).docx (三年级英语上册)Unit 8 课堂教学PPT框架与“你说我做”(Simon says)课堂游戏指令集.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.