电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

微分方程matlab解微分方程

28页
  • 卖家[上传人]:E****
  • 文档编号:90904997
  • 上传时间:2019-06-20
  • 文档格式:PPT
  • 文档大小:863KB
  • / 28 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、微分方程的解析解,To Matlab(ff1),结 果:u = tg(t-c),解 输入命令: y=dsolve(D2y+4*Dy+29*y=0,y(0)=0,Dy(0)=15,x),结 果 为 : y =3e-2xsin(5x),To Matlab(ff2),解 输入命令 : x,y,z=dsolve(Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z, t); x=simple(x) % 将x化简 y=simple(y) z=simple(z),结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t,To Matlab(ff3),返 回,微分方程的数值解,(一)常微分方程数值解的定义,在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。,因此

      2、,研究常微分方程的数值解法是十分必要的。,返 回,(二)建立数值解法的一些途径,1、用差商代替导数,若步长h较小,则有,故有公式:,此即欧拉法。,2、使用数值积分,对方程y=f(x,y), 两边由xi到xi+1积分,并利用梯形公式,有:,实际应用时,与欧拉公式结合使用:,此即改进的欧拉法。,故有公式:,3、使用泰勒公式,以此方法为基础,有龙格-库塔法、线性多步法等方法。,4、数值公式的精度,当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式。,k越大,则数值公式的精度越高。,欧拉法是一阶公式,改进的欧拉法是二阶公式。 龙格-库塔法有二阶公式和四阶公式。 线性多步法有四阶阿达姆斯外插公式和内插公式。,返 回,(三)用Matlab软件求常微分方程的数值解,t,x=solver(f,ts,x0,options),1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.,2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.,注意:,解: 令 y1=x,y2=y1,1、建立m-文件vd

      3、p1000.m如下: function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1000*(1-y(1)2)*y(2)-y(1);,2、取t0=0,tf=3000,输入命令: T,Y=ode15s(vdp1000,0 3000,2 0); plot(T,Y(:,1),-),3、结果如图,To Matlab(ff4),解 1、建立m-文件rigid.m如下: function dy=rigid(t,y) dy=zeros(3,1); dy(1)=y(2)*y(3); dy(2)=-y(1)*y(3); dy(3)=-0.51*y(1)*y(2);,2、取t0=0,tf=12,输入命令: T,Y=ode45(rigid,0 12,0 1 1); plot(T,Y(:,1),-,T,Y(:,2),*,T,Y(:,3),+),3、结果如图,To Matlab(ff5),图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.,返 回,物体在空气中的冷却速度与物体,空气的温差成正比,如果物体在20min内由100度冷却到60度

      4、,那么经过多长时间物体的温度将达到30度? 解: 牛顿冷却定律:将温度为T的物体放入常温T0的介质中,T的变化速率正比与T与周围介质的温度差,解: 牛顿冷却定律:将温度为T的物体放入常温T0的介质中,T的变化速率正比与T与周围介质的温度差,导弹追踪问题,设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中?,解法一(解析法),由(1),(2)消去t整理得模型:,To Matlab(chase1),轨迹图见程序chase1,解法二(数值解),1.建立m-文件eq1.m function dy=eq1(x,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1/5*sqrt(1+y(2)2)/(1-x);,2. 取x0=0,xf=0.9999,建立主程序ff6.m如下: x0=0,xf=0.9999 x,y=ode15s(eq1,x0 xf,0 0); plot(x,y(:,1),b.) hold on y=

      5、0:0.01:2; plot(1,y,b*),结论: 导弹大致在(1,0.2)处击中乙舰,To Matlab(ff6),令y1=y,y2=y1,将方程(3)化为一阶微分方程组。,解法三(建立参数方程求数值解),设时刻t乙舰的坐标为(X(t),Y(t),导弹的坐标为(x(t),y(t).,3因乙舰以速度v0沿直线x=1运动,设v0=1,则w=5,X=1,Y=t,4. 解导弹运动轨迹的参数方程,建立m-文件eq2.m如下: function dy=eq2(t,y) dy=zeros(2,1); dy(1)=5*(1-y(1)/sqrt(1-y(1)2+(t-y(2)2); dy(2)=5*(t-y(2)/sqrt(1-y(1)2+(t-y(2)2);,取t0=0,tf=2,建立主程序chase2.m如下: t,y=ode45(eq2,0 2,0 0); Y=0:0.01:2; plot(1,Y,-), hold on plot(y(:,1),y(:,2),*),To Matlab(chase2),5. 结果见图1,导弹大致在(1,0.2)处击中乙舰,与前面的结论一致.,图1,图2,返 回,

      6、在chase2.m中,按二分法逐步修改tf,即分别取tf=1,0.5,0.25,直到tf=0.21时,得图2.,结论:时刻t=0.21时,导弹在(1,0.21)处击中乙舰。,To Matlab(chase2),慢跑者与狗,一个慢跑者在平面上沿椭圆以恒定的速率v=1跑步,设椭圆方程为: x=10+20cost, y=20+5sint. 突然有一只狗攻击他. 这只狗从原点出发,以恒定速率w跑向慢跑者,狗的运动方向始终指向慢跑者.分别求出w=20,w=5时狗的运动轨迹.,1. 模型建立,设时刻t慢跑者的坐标为(X(t),Y(t),狗的坐标为(x(t),y(t).,则X=10+20cost, Y=20+15sint, 狗从(0,0)出发,与导弹追踪问题类似,建立狗的运动轨迹的参数方程:,2. 模型求解,(1) w=20时,建立m-文件eq3.m如下: function dy=eq3(t,y) dy=zeros(2,1); dy(1)=20*(10+20*cos(t)-y(1)/sqrt (10+20*cos(t)-y(1)2+(20+15*sin(t)-y(2)2); dy(2)=20*(20

      7、+15*sin(t)-y(2)/sqrt (10+20*cos(t)-y(1)2+(20+15*sin(t)-y(2)2);,取t0=0,tf=10,建立主程序chase3.m如下: t0=0;tf=10; t,y=ode45(eq3,t0 tf,0 0); T=0:0.1:2*pi; X=10+20*cos(T); Y=20+15*sin(T); plot(X,Y,-) hold on plot(y(:,1),y(:,2),*),在chase3.m,不断修改tf的值,分别取tf=5, 2.5, 3.5,至3.15时, 狗刚好追上慢跑者.,To Matlab(chase3),建立m-文件eq4.m如下: function dy=eq4(t,y) dy=zeros(2,1); dy(1)=5*(10+20*cos(t)-y(1)/sqrt (10+20*cos(t)-y(1)2+(20+15*sin(t)-y(2)2); dy(2)=5*(20+15*sin(t)-y(2)/sqrt (10+20*cos(t)- y(1)2+(20+15*sin(t)-y(2)2);,取t0=0,tf=

      8、10,建立主程序chase4.m如下: t0=0;tf=10; t,y=ode45(eq4,t0 tf,0 0); T=0:0.1:2*pi; X=10+20*cos(T); Y=20+15*sin(T); plot(X,Y,-) hold on plot(y(:,1),y(:,2),*),在chase3.m,不断修改tf的值,分别取tf=20, 40, 80, 可以看出,狗永远追不上慢跑者.,To Matlab(chase4),(2) w=5时,返 回,地中海鲨鱼问题,意大利生物学家Ancona曾致力于鱼类种群相互制约关系的研究,他从第一次世界大战期间,地中海各港口捕获的几种鱼类捕获量百分比的资料中,发现鲨鱼等的比例有明显增加(见下表),而供其捕食的食用鱼的百分比却明显下降.显然战争使捕鱼量下降,食用鱼增加,鲨鱼等也随之增加,但为何鲨鱼的比例大幅增加呢?,他无法解释这个现象,于是求助于著名的意大利数学家V.Volterra,希望建立一个食饵捕食系统的数学模型,定量地回答这个问题.,该 模型反映了在没有人工捕获的自然环境中食饵与捕食者之间的制约关系,没有考虑食饵和捕食者自身的阻滞作用,

      9、是Volterra提出的最简单的模型.,首先,建立m-文件shier.m如下: function dx=shier(t,x) dx=zeros(2,1); dx(1)=x(1)*(1-0.1*x(2); dx(2)=x(2)*(-0.5+0.02*x(1);,其次,建立主程序shark.m如下: t,x=ode45(shier,0 15,25 2); plot(t,x(:,1),-,t,x(:,2),*) plot(x(:,1),x(:,2),To Matlab(shark),求解结果:,左图反映了x1(t)与x2(t)的关系。 可以猜测: x1(t)与x2(t)都是周期函数。,模型(二) 考虑人工捕获,设表示捕获能力的系数为e,相当于食饵的自然增长率由r1 降为r1-e,捕食者的死亡率由r2 增为 r2+e,设战前捕获能力系数e=0.3, 战争中降为e=0.1, 则战前与战争中的模型分别为:,模型求解:,1、分别用m-文件shier1.m和shier2.m定义上述两个方程,2、建立主程序shark1.m, 求解两个方程,并画出两种情况下鲨鱼数在鱼类总数中所占比例 x2(t)/x1(t)+x2(t),To Matlab(shark1),实线为战前的鲨鱼比例,“*”线为战争中的鲨鱼比例,结论:战争中鲨鱼的比例比战前高!,返 回,

      《微分方程matlab解微分方程》由会员E****分享,可在线阅读,更多相关《微分方程matlab解微分方程》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2 2022年小学体育教师学期工作总结 2022年家长会心得体会集合15篇
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.