电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

量子纠缠----宇宙观的重新定义

49页
  • 卖家[上传人]:尘土
  • 文档编号:60549404
  • 上传时间:2018-11-17
  • 文档格式:DOCX
  • 文档大小:414.04KB
  • / 49 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、量子纠缠-宇宙观的重新定义量子纠缠是如何作用的?物理学家狄拉克的解释有点特别“量子纠缠”这个词我没必要再解释了,能点击看这篇文章的人对这个术语再熟悉不过了。但很多人读了不靠谱的文章而对量子纠缠变得更模糊了。有的文章为了所谓的通俗而把量子纠缠比喻成心灵感应,甚至是太极八卦。科普作者水平的局限性也导致了读者理解的局限性。专业的知识还需要严谨的解读。本文会涉及一些符号和数学知识,但我尽量通俗一点。毕竟通俗和严谨很难兼得,笔者今天就尝试一下。讲量子纠缠之前,我必须简单提及一下光学的历史。毕竟人类对光线本质的思索才更深层次地领略到微观世界的神奇。早在牛顿之前,人们就开始思考光的本质。牛顿之前的历史暂不过多提及,牛顿认为光就是极小的实体粒子,因为这可以完美诠释“光为什么沿直线传播”的问题。当然也有一部分人反对牛顿,比如惠更斯,和牛顿同时代的胡克都是光的波动学说的簇拥者。光如果仅是粒子,那么光线的衍射和干涉现象就很难解释了。在现在看来,不管是光的粒子学说还是波动学说都属于经典力学的范畴,两派都是片面之词。直到20世纪初,随着量子力学的建立,人类对光本质的认识才有了质的飞跃。爱因斯坦的光量子假说认为光

      2、并非是牛顿所说的实物粒子,而是光量子。光量子是电磁波能量的基本单位,不可再分割。光量子简称光子,不仅是量子,也是一种波。光既具有粒子性也具有波动性,也称光的波粒二象性。当然这是光子的特征。可随后物理学家发现除了光子,更多的微观粒子也具有波粒二象性。比如电子的双缝干涉实验,也表明原本被认定为粒子的电子也具有波动性。这个实验更神奇的结果是,同一个电子可以同时经过两个细缝抵达光屏。现在我们知道电子在不被观测时可以同时处于两个位置。用波粒二象性的观点解释:电子在不被观测时,既具有粒子性也具有波动性,处于粒子和波态的叠加状态,观测行为导致电子的波粒二象性坍塌成粒子性了,而波动性消失。从不确定性原理(曾被误译为测不准原理)的角度解释:电子的动量和位置不能同时测得;动量测得越准,位置越不准,反之亦然。电子的双缝干涉实验当然你会惊呼这种现象,但越来越多的实验却不断证实自然界就是如此“荒谬”。如果量子力学的解释是错的,那么你今天就不会用到手机和电脑。第三次科技革命也建立在如此“荒谬”的自然现象的基础上。有的民科始终要推翻哥本哈根学派对这种看似荒谬的自然现象的诠释,而捍卫物理实在论。而科学家做的却是:既然

      3、这是自然事实,那就认定呗。接下来要做的就是用数学如何解释这种现象。我们现在知道了,所有微观粒子都具有波粒二象性的,并且都是叠加态的。其实德布罗意波告诉我们:所有物体,包括地球这样的宏观天体也具有波动性,只不过幅度小到难以观测到而已。光的波粒二象性示意图什么是叠加态呢?以电子为例,单独的一个电子在不被观测时可以处于两个位置,理论上一个电子可以在美国,同时也可以在中国。那如何用数学描述这一现象呢?我们都知道传统的电子计算机运算的是0和1这样的比特位。计算机一次只能运算一个位,要么0要么1。对于一串010111000.,计算机只能挨个位来处理,一个个排队来。而量子计算机之所以运算量惊人,在于它可以同时处理两个比特位。在运算速度上以数量级的形式碾压了传统计算机。有个物理学家叫狄拉克,他发明了一种符号,叫狄拉克符号|,用于描述叠加态的粒子。其实一个粒子同时具有两个状态就相当于中学物理的矢量概念,既有大小也有方向,所以叠加态也可以称为态矢量。狄拉克狄拉克符号的书写主要就是一个| 和 ,至于中间的就是随便一个字母,表示粒子的状态而已。|就是类似()的符号用于表达某种物理形式,不要碰见陌生符号就怕了。

      4、我们知道电子可以同时处于0和1的状态。那么用狄拉克符号表示:电子处于0的状态就是|0,处于1的状态就是|1。如果不观察电子,电子就是处在0和1的叠加状态,于是就是|0+|1。我们现在讲一些预备的数学知识。如果函数f(x,y)=xy,那么f(x,y)这个函数就可以分解成两个单独的一元函数之积,比如f(x,y)=f(x) f(y)。这就意味着f(x,y)这个大函数可以完美分家成两个小函数,分别是f(x)和f(y)。数学上这叫分离函数。可是还有很多函数并不是分离函数。比如f(x,y)=8xy+1。这时候我们就不能将函数f(x,y)分成两个一元函数了。那么这就表明此函数不能分离。如果现在有很多微观粒子在同一个系统下,每个粒子都有自己状态的函数。一个粒子是一元函数,两个粒子是二元函数,多个粒子就是多元函数。多个粒子组成系统就是个多元函数。如果这个多元函数可以分出两个的一元函数,那么这两个一元函数代表的粒子就没有什么“经济”纠纷,两个粒子井水不犯河水。测量其中一个粒子,另一个粒子也没有任何改变,那这两个粒子就不是纠缠粒子。多元函数中也可能存在无法分离开来的函数,那么这时候两个粒子的函数就只能共用同

      5、一个函数而不能分家,这时候两个粒子就产生了“经济纠纷”,对其中一个粒子进行测量,势必影响到另一个粒子的“经济利益”。那么另一个粒子肯定要有所改变来捍卫自己的权益,那这两个粒子就组成了纠缠粒子。继续回到狄拉克符号。现在有一个粒子,它的状态a|0+b|1。观测这个粒子后,发现它不管是0状态还是1状态,理论上都可以在空间的任何一个位置。所以在狄拉克公式中,不管是0状态还是1状态,都要在它们前面加两个任意的数a和b。正是由于a和b的存在,才可以让这个叠加态的粒子处于空间的任何位置,因为a和b可以任意取值。但是a和b之间必须有个关系。大家试想一下:不管粒子在哪里,我在整个空间找到这个粒子的概率一定是100%,粒子不可能凭空消失在整个宇宙空间中。如果我把整个空间换成数学上的1,那么|a|+|b|=1。如果我们取a和b都为1,那么a|0+b|1就变成(|0+|1)/2(除以根2是由于要确保|a|+|b|=1,因为我们前面已经取a和b为1了)(|0+|1)/2也是最常见的单粒子叠加态的表示方式。如果甲乙两个粒子在同一个系统中,那么它两的表示方式就是|00+|11,这个表式中加号左边的(|00的第一个0

      6、表示甲的0状态,第二个0表示乙的0状态,加号右边|11中的第一个1表示甲的1状态,第二个1表示乙的1状态。当然我也可以继续写出a|00+b|11,这时候如果|a|+|b|依旧等于1,那么我们才可以确定的说,甲乙两个粒子处于叠加态,这时候的狄拉克式子就写成了|00+|11/2。事实上|00+|11/2表明这两个粒子存在着某种关联而无法分解出来,这种关联就是|a|+|b|=1。你可以把这种关联想象成前面已经讲到的不可分离函数。这就是量子纠缠,这种关联也导致即便两个粒子相距多么遥远,测量其中一个粒子的状态,另一个粒子的状态也会同时发生改变!量子纠缠在量子力学里,当几个粒子在彼此相互作用后,由于各个粒子所拥有的特性已综合成为整体性质,无法单独描述各个粒子的性质,只能描述整体系统的性质,则称这现象为量子缠结或量子纠缠(quantum entanglement)。量子纠缠是一种纯粹发生于量子系统的现象;在经典力学里,找不到类似的现象。1历史编辑1935年,在普林斯顿高等研究院,爱因斯坦、博士后罗森、研究员波多尔斯基合作完成论文物理实在的量子力学描述能否被认为是完备的?,并且将这篇论文发表于5月份的

      7、物理评论。这是最早探讨量子力学理论对于强关联系统所做的反直觉预测的一篇论文。在这篇论文里,他们详细表述EPR佯谬,试图借着一个思想实验来论述量子力学的不完备性质。他们并没有更进一步研究量子纠缠的特性。2薛定谔阅读完毕EPR论文之后,有很多心得感想,他用德文写了一封信给爱因斯坦,在这封信里,他最先使用了术语Verschrnkung(他自己将之翻译为“纠缠”),这是为了要形容在EPR思想实验里,两个暂时耦合的粒子,不再耦合之后彼此之间仍旧维持的关联。不久之后,薛定谔发表了一篇重要论文,对于“量子纠缠”这术语给予定义,并且研究探索相关概念。薛定谔体会到这概念的重要性,他表明,量子纠缠不只是量子力学的某个很有意思的性质,而是量子力学的特征性质;量子纠缠在量子力学与经典思路之间做了一个完全切割。如同爱因斯坦一样,薛定谔对于量子纠缠的概念并不满意,因为量子纠缠似乎违反在相对论中对于信息传递所设定的速度极限。后来,爱因斯坦更讥讽量子纠缠为鬼魅般的超距作用。EPR论文很显然地引起了众多物理学者的兴趣,启发他们探讨量子力学的基础理论。但是除了这方面以外,物理学者认为这论题与现代量子力学并没有什么牵扯,在

      8、之后很长一段时间,物理学术界并没有特别重视这论题,也没有发现EPR论文可能有什么重大瑕疵。EPR论文试图建立定域性隐变量理论来替代量子力学理论。1964年,约翰贝尔提出论文表明,对于EPR思想实验,量子力学的预测明显地不同于定域性隐变量理论。概略而言,假若测量两个粒子分别沿着不同轴向的自旋,则量子力学得到的统计关联性结果比定域性隐变量理论要强很多,贝尔不等式定性地给出这差别,做实验应该可以侦测出这差别。因此,物理学者做了很多检试贝尔不等式的实验。1972年,约翰克劳泽与史达特弗利曼(Stuart Freedman)首先完成这种检试实验。1982年,阿兰阿斯佩的博士论文是以这种检试实验为题目。他们得到的实验结果符合量子力学的预测,不符合定域性隐变量理论的预测,因此证实定域性隐变量理论不成立。但是,每一个相关实验都存在有漏洞,这造成了实验的正确性遭到质疑,在作总结之前,还需要完成更多精确的实验。这些年来,众多研究结果促成了应用这些超强关联来传递信息的可能性,从而导致了量子密码学的成功发展,最著名的有查理斯贝内特(Charles Bennett)与吉勒布拉萨(Gilles Brassard)

      9、发明的BB84协议、阿图尔艾克特(Artur Eckert)发明的E91协议。2017年6月16日,量子科学实验卫星墨子号首先成功实现,两个量子纠缠光子被分发到相距超过1200公里的距离后,仍可继续保持其量子纠缠的状态。2018年4月25日,芬兰阿尔托大学教授麦卡习岚帕(Mika Sillanp)领导的实验团队成功地量子纠缠了两个独自震动的鼓膜。每个鼓膜的宽度只有15微米,约为头发的宽度,是由10个金属铝原子制成。通过超导微波电路,在接近绝对温度(-273K)下,两个鼓膜持续进行了约30分钟的互动。这实验演示出巨观的量子纠缠。基本概念编辑假设一个零自旋中性介子衰变成一个电子与一个正电子。这两个衰变产物各自朝着相反方向移动。电子移动到区域A,在那里的观察者“爱丽丝”会观测电子沿着某特定轴向的自旋;正电子移动到区域B,在那里的观察者“鲍勃”也会观测正电子沿着同样轴向的自旋。在测量之前,这两个纠缠粒子共同形成了零自旋的“纠缠态”,是两个直积态(product state)的叠加,以狄拉克标记表示为3其中,分别表示粒子的自旋为上旋或下旋。在圆括弧内的第一项表明,电子的自旋为上旋当且仅当正电子的自旋为下旋;第二项表明,电子的自旋为下旋当且仅当正电子的自旋为上旋。两种状况叠加在一起,每一种状况都有可能发生,不能确定到底哪种状况会发生,因此,电子与正电子纠缠在一起,形成纠缠态。假若不做测量,则无法知道这两个粒子中任何一个粒子的自旋,根据哥本哈根诠释,这性质并不存在。这单态的两个粒子相互反关联,对于两个粒子的自旋分别做测量,假若电子的自旋为上旋,则正电子的自旋为下旋,反之亦然;假若电子的自旋下旋,则正电子自旋为上旋,反之亦然。量子力学不能预测到底是哪一组数值,但是量子力学可以预言,获得任何一组数值的概率为50%。粒子沿着不同轴向的自旋彼此之间是不相容可观察量,对于这些不相容可观察量作测量

      《量子纠缠----宇宙观的重新定义》由会员尘土分享,可在线阅读,更多相关《量子纠缠----宇宙观的重新定义》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2 2022年小学体育教师学期工作总结 2022年家长会心得体会集合15篇
     
    收藏店铺
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.