电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

内存的工作原理及时序介绍资料

13页
  • 卖家[上传人]:E****
  • 文档编号:107207286
  • 上传时间:2019-10-18
  • 文档格式:DOC
  • 文档大小:502.50KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、内存的工作原理及时序介绍第一部分:工作原理DRAM基本组成内存是由DRAM(动态随机存储器)芯片组成的。DRAM的内部结构可以说是PC芯片中最简单的,是由许多重复的“单元”cell组成,每一个cell由一个电容和一个晶体管(一般是N沟道MOSFET)构成,电容可储存1bit数据量,充放电后电荷的多少(电势高低)分别对应二进制数据0和1。由于电容会有漏电现象,因此过一段时间之后电荷会丢失,导致电势不足而丢失数据,因此必须经常进行充电保持电势,这个充电的动作叫做刷新,因此动态存储器具有刷新特性,这个刷新的操作一直要持续到数据改变或者断电。而MOSFET则是控制电容充放电的开关。DRAM由于结构简单,可以做到面积很小,存储容量很大。内存地址内存中的cell按矩阵形排列,每一行和每一列都会有一个对应的行地址线路(正规叫法叫做word line)和列地址线路(正规叫法是bit line),每个具体的cell就挂接在这样的行地址线路和列地址线路上,对应一个唯一的行号和列号,把行号和列号组合在一起,就是内存的地址。上图是Thaiphoon Burner的一个SPD dump,每个地址是一个字节。不过

      2、我们可以把这些数据假设成只有一个bit,当成是一个简单的内存地址表,左边竖着的是行地址,上方横着的是列地址。例如我们要找第七行、倒数第二列(地址为7E)的数据,它就只有一个对应的值:FD。当然了,在内存的cell中,它只能是0或者1。寻址数据要写入内存的一个cell,或者从内存中的一个cell读取数据,首先要完成对这个cell的寻址。寻址的过程,首先是将需要操作的cell的对应行地址信号和列地址信号输入行/列地址缓冲器,然后先通过行解码器(Row Decoder)选择特定的行地址线路,以激活特定的行地址。每一条行地址线路会与多条列地址线路和cell相连接,为了侦测列地址线路上微弱的激活信号,还需要一个额外的感应放大器(Sense Amplifier)放大这个信号。当行激活之后,列地址缓冲器中的列地址信号通过列解码器(Column Decoder)确定列地址,并被对应的感应放大器通过连接IO线路,这样cell就被激活,并可供读写操作,寻址完成。从行地址激活,到找到列地址这段时间,就是tRCD。内存cell的基本操作内存中的cell可以分为3个基本操作,数据的储存、写入与读取。为了便于理解

      3、,我不打算直接从电路控制上对cell操作进行说明,而是希望通过模型类比来达到说明问题的目的,如有不严谨之处,高手勿怪。要对内存cell进行读写操作,首先要完成上述寻址过程,并且电容的充电状态信号要被感应放大器感应到,并且放大,然后MOSFET打开,电容放电,产生电势变化,把电荷输送到IO线路,导致线路的电势也变化。当然,这只是个简单的描述,以下我们先来了解硅晶体中“电容”的结构和MOSFET的控制原理。硅晶体中的“电容”这里之所以“电容”两个字被打上引号,是因为硅晶体中并没有真正意义上的电容。硅晶体中的电容是由两个对置的触发器组成的等效电容。例如两个非门(Nor Gate)用如下图的方式对接。它可以通过周期性施加特定的输入信号,以把电荷保留在电路中,充当电容的作用。如下图,两个非门的输入端R和S互相交替做0和1输入,就可以把电荷储存在电路中。整个动态过程就是这样:而R和S的波形就是如下图所示,刚好互为反相,差半个周期:要让电容放电,我们只需要把R和S同时输入1或者0即可。因此这种电容的逻辑关系很简单:在同一时刻R和S输入状态不同(即存在电势差)时,电容为充电状态;在同一时刻R和S输入状

      4、态相同(即电势差为0)时,电容为放电状态。MOSFET的控制原理水库模型要说明这个MOSFET的控制原理,我们借助一个水库的模型来说明。MOSFET有三个极,分别是源极(Source)、漏极(Drain)和栅极(Gate)。下图左边就是一个MOSFET的电路图,右边是我们画出的一个水库模型。图中S为源极,D为漏极,G为栅极。S极连接着电容,D级连接列地址线路,并接到数据IO,G则是控制电荷流出的阀门,连接行地址线路。电容在充电后电势会改变,这样S极的电势就会跟着改变,与D极形成电势差,而G极的电势,就决定了S极有多少电荷可以流入D极。由于电子是带负电荷,因此电子越多电势就越低。为了不至于混淆概念,我们把水池顶部电势定为0V,水池底部电势定为5V(仅举例说明,DRAM中的电容实际电压未必是5V)。当电子数量越多时,电势越低,接近0V,电子数量越少时,电势越高,接近5V。用水库模型说明,就是左边的水池水量升高(电容充电后),当阀门关闭时,左边的水是不会往右边流的。然后阀门打开(降低,电势升高),左边的水就可以往右边流,阀门的高度就决定了有多少水能流去右边的水道(但是在数字电路中,MOSFE

      5、T只有开和关两种状态,因此下文提到的打开MOSFET就是全开);同样道理如果右边水多,阀门打开之后也可以向左边流。因此在水库模型中,电容就充当了左边的水池,而MOSFET的栅极就充当了阀门,列地址线路和IO则充当了右边的水道。储存数据MOSFET栅极电势为0V时,电容的电荷不会流出,因此数据就可以保存我们可以用2.5V为参考分界线,电容电势低于2.5V时,表示数据0,电势高于2.5V时,表示数据1。例如上一楼水库模型的左图,电容中储存的电子数高于一半的高度,电势低于2.5V,因此可以表示数据0。但以上只是理论情况,实际上电容会自然漏电,电子数量会逐渐减少,电势就会逐渐升高,当电势升高到2.5V以上时,数据就会出错,因此每隔一段时间必须打开MOSFET往电容中充电,以保持电势,这就是刷新。因此,数据的储存主要就是对电容中电势的保持操作。写入数据数据写入的操作分为写入0和写入1两种情况。写入前,电容原有的情况可能是高电势与低电势的状态,我们不用管它。写入0和写入1对cell的操作不尽相同,我们分别来看。先来看写入0的操作。写入开始时,IO线路上电势为0(水道处于水位最高点),MOSFET栅

      6、极电势升高到5V(水库阀门降到最低),阀门打开,电容中的电势就跟着降低(水位升高),直到接近0V(水池被灌满),写入0完成,栅极电势降回0V,阀门关闭。再看写入1的操作。写入开始时,IO线路上的电势为5V(水道水位为最低点),MOSFET栅极电势升高到5V(水库阀门降到最低),阀门打开,电容中的电势跟着升高(水流出并降低水位)到接近5V,写入1完成,栅极电势回到0V,阀门关闭。读取数据读取的时候,对漏极的电压操作跟写入有些不同。因为水道中的水比水池中的多,或者说水道的容量比水池要大得多。如果水道(漏极)的水为满或者空,在阀门打开的时候很容易出现水道的水倒灌进水池的现象,或是水池的水全部流去水道,这样就有可能导致电容中的电势状态改变,电容对应储存的0或者1也会改变。所以读取数据的时候,IO线路的电压应为1/2的满电势,即2.5V。读取也同样分读取0和1两种情况。在读取之前,电容中的电势应该是大于或者小于2.5V的,分别代表存储了1和0。由于刷新机制的存在,应该不会允许出现等于2.5V的情况。首先看读取0操作。电容中为低电势(假设为0V,水池为高水位),IO线路上电势升高至2.5V(这时水

      7、道水位比水池低),MOSFET栅极电势升高到5V(水库阀门降到最低),阀门打开,电容中电势升高(水位降低),但由于水道容量较大,因此水位不会升高太多,但是总归也会有个电势的变低,最终电容与IO线路上的电势都变成0-2.5V的一个中间值,并且接近2.5V(假设为2.3V)。这时候感应放大器检测到IO线路上电势低于2.5V,因此识别出0读出。再看读取1操作。电容中为高电势(假设为5V,水池空),IO线路上电势升高至2.5V(这时候水道水位比水池高),MOSFET栅极电势升高到5V(水库阀门降到最低),阀门打开,电容中电势降低(水位升高),但由于水道容量较大,水位不会降低太多,不过多少也会降低一点(电势会升高),假设升高到2.7V。这时候感应放大器检测到IO线路的电势高于2.5V,识别出1读出。以上讲述的只是从cell到内存IO线路的读写操作,至于CPU-IMC-内存的读写操作,不在本文讨论范围。第二部分:时序介绍时序及相关概念以下我把时序分为两部分,只是为了下文介绍起来作为归类,非官方分类方法。第一时序:CL-tRCD-tRP-tRAS-CR,就是我们常说的5个主要时序。第二时序:(包含所

      8、有XMP时序)在讲时序之前,我想先让大家明白一些概念。内存时钟信号是方波,DDR内存在时钟信号上升和下降时各进行一次数据传输,所以会有等效两倍传输率的关系。例如DDR3-1333的实际工作频率是666.7MHz,每秒传输数据666.7*2=1333百万次,即1333MT/s,也就是我们说的等效频率1333MHz,再由每条内存位宽是64bit,那么它的带宽就是:1333MT/s*64bit/8(8bit是一字节)=10667MB/s。所谓时序,就是内存的时钟周期数值,脉冲信号经过上升再下降,到下一次上升之前叫做一个时钟周期,随着内存频率提升,这个周期会变短。例如CL9的意思就是CL这个操作的时间是9个时钟周期。另外还要搞清楚一些基本术语:Cell:颗粒中的一个数据存储单元叫做一个Cell,由一个电容和一个N沟道MOSFET组成。Bank:8bit的内存颗粒,一个颗粒叫做一个bank,4bit的颗粒,正反两个颗粒合起来叫做一个bank。一根内存是64bit,如果是单面就是8个8bit颗粒,如果是双面,那就是16个4bit的颗粒分别在两面,不算ECC颗粒。Rank:内存PCB的一面所有颗粒叫

      9、做一个rank,目前在Unbuffered台式机内存上,通常一面是8个颗粒,所以单面内存就是1个rank,8个bank,双面内存就是2个rank,8个bank。Bank与rank的定义是SPD信息的一部分,在AIDA64中SPD一栏可以看到。DIMM:指一条可传输64bit数据的内存PCB,也就是内存颗粒的载体,算上ECC芯片,一条DIMM PCB最多可以容纳18个芯片第一时序CAS Latency(CL):CAS即Column Address Strobe,列地址信号,它定义了在读取命令发出后到数据读出到IO接口的间隔时间。由于CAS在几乎所有的内存读取操作中都会生效(除非是读取到同一行地址中连续的数据,4bit颗粒直接读取间隔3个地址,8bit颗粒直接读取间隔7个地址,这时候CAS不生效),因此它是对内存读取性能影响最强的。如下图,蓝色的Read表示读取命令,绿色的方块表示数据读出IO,中间间隔的时间就是CL。已知CL时钟周期值CAS,我们可以使用以下公式来计算实际延迟时间tCAS:tCAS(ns)=(CAS*2000)/内存等效频率例如,DDR3-1333 CL9内存实际CAS延迟时间=(9*2000)/1333=13.50 ns或者反过来算,假如已知你的内存可以在7.5ns延迟下稳定工作,并且你想要DDR3-2000的频率,那么你可以把CL值设为8T(实际上8ns,大于7.5ns即可),如果你想要DDR3-1600的频率,那么你的CL值可以设到6T(实际7.5ns)。这个公式对于所有用时钟周期表示延迟的内存时序都可以用。说到这个公式,我想顺便说说大家对频率和时序的纠结问题。首先来回顾一下DDR一代到三代的一些典型的JEDEC规范,并按照上边那个公式算一下它的CL延迟时间:DDR-400 3-3-3-8:(3*2000)/400=15 nsDDR2-800 6-6-6-18:(6*2000)/800=15 n

      《内存的工作原理及时序介绍资料》由会员E****分享,可在线阅读,更多相关《内存的工作原理及时序介绍资料》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2 2022年小学体育教师学期工作总结 2022年家长会心得体会集合15篇
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.