电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第4章_模拟信号的数字传输

70页
  • 卖家[上传人]:今***
  • 文档编号:107186612
  • 上传时间:2019-10-18
  • 文档格式:PPT
  • 文档大小:1.19MB
  • / 70 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、1,通信原理,第4章模拟信号的数字传输,2,第4章模拟信号的数字传输,4.1 引言 数字化3步骤:抽样、量化和编码,4.2 模拟信号的抽样 为什么要进行模拟信号的数字化? 一个音乐波形: 模拟信号在数字系统中传输需先A/D,3,4,第4章模拟信号的数字传输,4.2 模拟信号的抽样 4.2.1 低通模拟信号的抽样定理 抽样定理: 设一个连续模拟信号m(t)的最高频率 fH,则以间隔时间为T 1/2fH的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定。,【证】设有一个最高频率小于fH的信号m(t) 。将这个信号和周期性单位冲激脉冲T(t)相乘,其重复周期为T,重复频率为fs = 1/T。乘积就是抽样信号,它是一系列间隔为T 秒的强度不等的冲激脉冲。这些冲激脉冲的强度等于相应时刻上信号的抽样值。现用 ms(t) = m(kT)表示此抽样信号序列。故有 用波形图示出如下:,5,6,第4章模拟信号的数字传输,7,第4章模拟信号的数字传输,令M(f)、(f)和Ms(f)分别表示m(t)、T(t)和ms(t)的频谱。按照频率卷积定理,m(t)T(t)的傅里叶变换等于M(f)和(f)的卷积

      2、。因此,ms(t)的傅里叶变换Ms(f)可以写为: 而(f)是周期性单位冲激脉冲的频谱,它可以求出等于: 式中, 将上式代入 Ms(f)的卷积式,得到,8,第4章模拟信号的数字传输,上式中的卷积,可以利用卷积公式: 进行计算,得到 上式表明,由于M(f - nfs)是信号频谱M(f)在频率轴上平移了nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的原信号频谱M(f)相叠加而成。 用频谱图示出如下:,9,第4章模拟信号的数字传输,f,10,第4章模拟信号的数字传输,因为已经假设信号m(t)的最高频率小于fH,所以若频率间隔fs 2fH,则Ms(f)中包含的每个原信号频谱M(f)之间互不重叠,如上图所示。这样就能够从Ms(f)中用一个低通滤波器分离出信号m(t)的频谱M(f),也就是能从抽样信号中恢复原信号。 这里,恢复原信号的条件是: 即抽样频率fs应不小于fH的两倍。这一最低抽样速率2fH称为奈奎斯特速率。与此相应的最小抽样时间间隔称为奈奎斯特间隔。,11,第4章模拟信号的数字传输,恢复原信号的方法:从上图可以看出,当fs 2fH时,用一个截止频率为fH的理想低通滤波器就

      3、能够从抽样信号中分离出原信号。从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如下图所示。这些冲激响应之和就构成了原信号。 理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs必须比2fH 大一些。 例如,典型电话信号的最高频率通常限制在3400 Hz,而抽样频率通常采用8000 Hz。,t,12,第4章模拟信号的数字传输,4.3 模拟脉冲调制 模拟脉冲调制的种类 脉冲振幅调制(PAM):按基带信号改变脉冲幅度参量。 脉冲宽度调制(PDM):按基带信号改变脉冲宽度参量。 脉冲位置调制(PPM):按基带信号改变脉冲位置参量。,定义:以时间上离散的脉冲串作为载波,用模拟基带信号 m(t) 去控制脉冲串的参数,使其按 m(t) 的规律变化的调制方式。,13,第4章模拟信号的数字传输,仍然是模拟调制,因为其代表信息的参量仍然是可以连续变化的。,(a)模拟基带信号 (b) PAM信号 (c) PDM信号 (d) PPM信号,14,第4章模拟信号的数字传输,PAM调制 PAM调制信号的频谱 设:基带模拟信号的波形为m(t)

      4、,其频谱为M(f);用这个信号对一个脉冲载波s(t)调幅,s(t)的周期为T,其频谱为S(f);脉冲宽度为,幅度为A;并设抽样信号ms(t)是m(t)和s(t)的乘积。 则抽样信号ms(t)的频谱就是两者频谱的卷积: 式中 sinc(nfH) = sin(nfH) / (nfH),15,第4章模拟信号的数字传输,PAM调制过程的波形和频谱图,16,第4章模拟信号的数字传输,由上图看出,若s(t)的周期T (1/2fH),或其重复频率fs 2fH,则采用一个截止频率为fH的低通滤波器仍可以分离出原模拟信号。 自然抽样和平顶抽样 在上述PAM调制中,得到的已调信号ms(t)的脉冲顶部和原模拟信号波形相同。这种PAM常称为自然抽样。在实际应用中,则常用“抽样保持电路”产生PAM信号。这种电路的原理方框图如右:,17,第4章模拟信号的数字传输,平顶抽样输出波形 平顶抽样输出频谱 设保持电路的传输函数为H(f),则其输出信号的频谱MH(f)为: 上式中的Ms(f)用 代入,得到,18,第4章模拟信号的数字传输,比较上面的MH(f)表示式和Ms(f)表示式可见,其区别在于和式中的每一项都被H(f)

      5、加权。因此,不能用低通滤波器恢复(解调)原始模拟信号了。但是从原理上看,若在低通滤波器之前加一个传输函数为1/H(f)的修正滤波器,就能无失真地恢复原模拟信号了。,19,第4章模拟信号的数字传输,4.4 抽样信号的量化 4.4.1 量化原理 设模拟信号的抽样值为m(kT),其中T是抽样周期,k是整数。此抽样值仍然是一个取值连续的变量。若仅用N个不同的二进制数字码元来代表此抽样值的大小,则N个不同的二进制码元只能代表M = 2N个不同的抽样值。因此,必须将抽样值的范围划分成M个区间,每个区间用一个电平表示。这样,共有M个离散电平,它们称为量化电平。用这M个量化电平表示连续抽样值的方法称为量化。,20,第4章模拟信号的数字传输,量化过程图 M个抽样值区间是等间隔划分的,称为均匀量化。M个抽样值区间也可以不均匀划分,称为非均匀量化。,21,第4章模拟信号的数字传输,量化一般公式 设:m(kT)表示模拟信号抽样值,mq(kT)表示量化后的量化信号值,q1, q2,qi, , q6是量化后信号的6个可能输出电平,m1, m2, ,mi, , m5为量化区间的端点。 则可以写出一般公式: 按照上式

      6、作变换,就把模拟抽样信号m(kT)变换成了量化后的离散抽样信号,即量化信号。,22,第4章模拟信号的数字传输,量化器 在原理上,量化过程可以认为是在一个量化器中完成的。量化器的输入信号为m(kT),输出信号为mq(kT) ,如下图所示。 在实际中,量化过程常是和后续的编码过程结合在一起完成的,不一定存在独立的量化器。,23,第4章模拟信号的数字传输,4.4.2 均匀量化 均匀量化的表示式 设模拟抽样信号的取值范围在a和b之间,量化电平数为M,则在均匀量化时的量化间隔为 且量化区间的端点为 若量化输出电平qi取为量化间隔的中点,则 显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。这个误差常称为量化噪声,并用信号功率与量化噪声之比衡量其对信号影响的大小。,i = 0, 1, , M,24,第4章模拟信号的数字传输,均匀量化的平均信号量噪比 在均匀量化时,量化噪声功率的平均值Nq可以用下式表示 式中, mk为模拟信号的抽样值,即m(kT); mq为量化信号值,即mq(kT); f(mk)为信号抽样值mk的概率密度; E表示求统计平均值; M为量化电平数;,25,第4章模

      7、拟信号的数字传输,信号mk的平均功率可以表示为 若已知信号mk的功率密度函数,则由上两式可以计算出平均信号量噪比。,26,第4章模拟信号的数字传输,【例4.1】设一个均匀量化器的量化电平数为M,其输入信号抽样值在区间-a, a内具有均匀的概率密度。试求该量化器的平均信号量噪比。 【解】 因为 所以有,27,第4章模拟信号的数字传输,另外,由于此信号具有均匀的概率密度,故信号功率等于 所以,平均信号量噪比为 或写成 由上式可以看出,量化器的平均输出信号量噪比随量化电平数M的增大而提高。,dB,28,第4章模拟信号的数字传输,4.4.3 非均匀量化 非均匀量化的目的:在实际应用中,对于给定的量化器,量化电平数M和量化间隔v都是确定的,量化噪声Nq也是确定的。但是,信号的强度可能随时间变化(例如,语音信号)。当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采用非均匀量化。,29,第4章模拟信号的数字传输,非均匀量化原理 在非均匀量化时,量化间隔随信号抽样值的不同而变化。信号抽样值小时,量化间隔v也小;信号抽样值大

      8、时,量化间隔v也变大。 实际中,非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。这里的压缩是用一个非线性电路将输入电压x变换成输出电压y:y = f(x) 如右图所示: 图中纵坐标y 是均匀刻 度的,横坐标x 是非均 匀刻度的。所以输入电 压x越小,量化间隔也就 越小。也就是说,小信号 的量化误差也小。,30,第4章模拟信号的数字传输,关于电话信号的压缩特性,国际电信联盟(ITU)制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 13折线法和15折线法。我国大陆、欧洲各国以及国际间互连时采用A律及相应的13折线法,北美、日本和韩国等少数国家和地区采用律及15折线法。,31,第4章模拟信号的数字传输,A压缩律 A压缩律是指符合下式的对数压缩规律: 式中,x 压缩器归一化输入电压; y 压缩器归一化输出电压; A 常数,它决定压缩程度。 A 律由两个表示式组成。第一个表示式中的y和x成正比,是一条直线方程;第二个表示式中的y和x是对数关系,类似理论上为保持信号量噪比恒定所需的理想特性的关系。,32,第4章模拟信号的数字传输,A律是物理可实现的。其中的常

      9、数A不同,则压缩曲线的形状不 同,这将特别影响小电压时的 信号量噪比的大小。在实用中, 选择A等于87.6。,33,第4章模拟信号的数字传输,13折线压缩特性 A律的近似 A律表示式是一条平滑曲线,用电子线路很难准确地实现。这种特性很容易用数字电路来近似实现。13折线特性就是近似于A律的特性。在下图中示出了这种特性曲线:,34,第4章模拟信号的数字传输,图中横坐标x在0至1区间中分为不均匀的8段。1/2至1间的线段称为第8段;1/4至1/2间的线段称为第7段;1/8至1/4间的线段称为第6段;依此类推,直到0至1/128间的线段称为第1段。图中纵坐标y 则均匀地划分作8段。将与这8段相应的座标点(x, y)相连,就得到了一条折线。由图可见,除第1和2段外,其他各段折线的斜率都不相同。在下表中列出了这些斜率:,35,第4章模拟信号的数字传输,因为语音信号为交流信号,所以,上述的压缩特性只是实用的压缩特性曲线的一半。在第3象限还有对原点奇对称的另一半曲线,如下图所示: 在此图中,第1象限中的第1和 第2段折线斜率相同,所以构成 一条直线。同样,在第3象限中 的第1和第2段折线斜率也相同, 并且和第1象限中的斜率相同。 所以,这4段折线 构成了一条直线。 因此,共有13段折 线,故称13折线压 缩特性。,36,第4章模拟信号的数字传输,均匀量化和均匀量化比较 若用13折线法中的(第一和第二段)最小量化间隔作为均匀量化时的量化间隔,则13折线法中第一至第八段包含的均匀量化间隔数分别为16、16、32、64、128、256、512、1024,共有2048个均匀量化间隔,而非均匀量化时只有128个量化间隔。因此,在保证小信号的量化间隔相等的条件下,均匀量化需要11比特编码,而非均匀量化只要7比特就够了。,37,第4章模拟信号的数字传输,4.5脉冲编码调制 4.5.1脉冲编码调制(PCM)的基本原理 把从模拟信号抽样、量化,直到变换成为二进制符号的基本过程,称为脉冲编码调制,简称脉码调制。 例:在下图中,模拟信号的抽样值为3.15,3.96,5.00,6.38,6.80和6.42。若按照“四舍五入”的原则量化为整数值,则抽样值量化后变为

      《第4章_模拟信号的数字传输》由会员今***分享,可在线阅读,更多相关《第4章_模拟信号的数字传输》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2 2022年小学体育教师学期工作总结 2022年家长会心得体会集合15篇
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.