电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > DOC文档下载
分享到微信 分享到微博 分享到QQ空间

第七章-微分方程

  • 资源ID:99559158       资源大小:574KB        全文页数:32页
  • 资源格式: DOC        下载积分:20金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要20金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

第七章-微分方程

第七章 微分方程教学目的:1了解微分方程及其解、阶、通解,初始条件和特等概念。2熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。3会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4 会用降阶法解下列微分方程:, 和5 理解线性微分方程解的性质及解的结构定理。6掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:1、 可分离的微分方程及一阶线性微分方程的解法2、 可降阶的高阶微分方程, 和3、 二阶常系数齐次线性微分方程;4、 自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、 齐次微分方程、伯努利方程和全微分方程;2、 线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。4、欧拉方程§12. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M(x, y)处的切线的斜率为2x, 求这曲线的方程. 解 设所求曲线的方程为y=y(x). 根据导数的几何意义, 可知未知函数y=y(x)应满足关系式(称为微分方程) . (1) 此外, 未知函数y=y(x)还应满足下列条件: x=1时, y=2, 简记为y|x=1=2. (2)把(1)式两端积分, 得(称为微分方程的通解) , 即y=x2+C, (3) 其中C是任意常数. 把条件“x=1时, y=2”代入(3)式, 得 2=12+C, 由此定出C=1. 把C=1代入(3)式, 得所求曲线方程(称为微分方程满足条件y|x=1=2的解): y=x2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t秒时行驶了s米. 根据题意, 反映制动阶段列车运动规律的函数s=s(t)应满足关系式 . (4)此外, 未知函数s=s(t)还应满足下列条件: t=0时, s=0, . 简记为s|t=0=0, s¢|t=0=20. (5) 把(4)式两端积分一次, 得 ; (6)再积分一次, 得 s=-0.2t2 +C1t +C2, (7)这里C1, C2都是任意常数. 把条件v|t=0=20代入(6)得 20=C1; 把条件s|t=0=0代入(7)得0=C2. 把C1, C2的值代入(6)及(7)式得 v=-0.4t +20, (8) s=-0.2t2+20t. (9)在(8)式中令v=0, 得到列车从开始制动到完全停住所需的时间 (s). 再把t=50代入(9), 得到列车在制动阶段行驶的路程 s=-0.2´502+20´50=500(m). 解 设列车在开始制动后t秒时行驶了s米, s¢¢=-0.4, 并且s|t=0=0, s¢|t=0=20. 把等式s¢¢=-0.4两端积分一次, 得 s¢=-0.4t+C1, 即v=-0.4t+C1(C1是任意常数), 再积分一次, 得 s=-0.2t2 +C1t +C2 (C1, C2都C1是任意常数). 由v|t=0=20得20=C1, 于是v=-0.4t +20; 由s|t=0=0得0=C2, 于是s=-0.2t2+20t. 令v=0, 得t=50(s). 于是列车在制动阶段行驶的路程 s=-0.2´502+20´50=500(m). 几个概念: 微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程. 微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x3 y¢¢¢+x2 y¢¢-4xy¢=3x2 , y(4) -4y¢¢¢+10y¢¢-12y¢+5y=sin2x, y(n) +1=0, 一般n阶微分方程: F(x, y, y¢, × × × , y(n) )=0. y(n)=f(x, y, y¢, × × × , y(n-1) ) . 微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y=j(x)在区间I上有n阶连续导数, 如果在区间I上, Fx, j(x), j¢(x), × × ×, j(n) (x)=0, 那么函数y=j(x)就叫做微分方程F(x, y, y¢, × × ×, y(n) )=0在区间I上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解. 初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x=x0 时, y=y0 , y¢= y¢0 . 一般写成 , . 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题. 如求微分方程y¢=f(x, y)满足初始条件的解的问题, 记为 . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数 x=C1cos kt+C2 sin kt是微分方程 的解. 解 求所给函数的导数: , . 将及x的表达式代入所给方程, 得 -k2(C1cos kt+C2sin kt)+ k2(C1cos kt+C2sin kt)º0. 这表明函数x=C1coskt+C2sinkt 满足方程, 因此所给函数是所给方程的解. 例4 已知函数x=C1coskt+C2sinkt(k¹0)是微分方程的通解, 求满足初始条件 x| t=0 =A, x¢| t=0 =0的特解. 解 由条件x| t=0 =A及x=C1 cos kt+C2 sin kt, 得 C1=A. 再由条件x¢| t=0 =0, 及x¢(t) =-kC1sin kt+kC2cos kt, 得 C2=0. 把C1、C2的值代入x=C1cos kt+C2sin kt中, 得 x=Acos kt. §12. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y¢=2x的通解. 为此把方程两边积分, 得y=x2+C. 一般地, 方程y¢=f(x)的通解为(此处积分后不再加任意常数). 2. 求微分方程y¢=2xy2 的通解. 因为y是未知的, 所以积分无法进行, 方程两边直接积分不能求出通解. 为求通解可将方程变为, 两边积分, 得 , 或, 可以验证函数是原方程的通解. 一般地, 如果一阶微分方程y¢=j(x, y)能写成 g(y)dy=f(x)dx形式, 则两边积分可得一个不含未知函数的导数的方程 G(y)=F(x)+C, 由方程G(y)=F(x)+C所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P(x, y)dx+Q(x, y)dy=0在这种方程中, 变量x与y 是对称的. 若把x看作自变量、y看作未知函数, 则当Q(x,y)¹0时, 有 . 若把y看作自变量、x看作未知函数, 则当P(x,y)¹0时, 有 . 可分离变量的微分方程: 如果一个一阶微分方程能写成 g(y)dy=f(x)dx (或写成y¢=j(x)y(y)的形式, 就是说, 能把微分方程写成一端只含y的函数和dy, 另一端只含x的函数和dx, 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程?(1) y¢=2xy, 是. Þy-1dy=2xdx .(2)3x2+5x-y¢=0, 是. Þdy=(3x2+5x)dx.(3)(x2+y2)dx-xydy=0, 不是.(4)y¢=1+x+y2+xy2, 是. Þy¢=(1+x)(1+y2).(5)y¢=10x+y, 是. Þ10-ydy=10xdx.(6). 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g(y)dy =f(x)dx的形式; 第二步 两端积分:, 设积分后得G(y)=F(x)+C; 第三步 求出由G(y)=F(x)+C所确定的隐函数y=F(x)或x=Y(y)G(y)=F(x)+C , y=F (x)或x=Y(y)都是方程的通解, 其中G(y)=F(x)+C称为隐式(通)解. 例1 求微分方程的通解. 解 此方程为可分离变量方程, 分离变量后得 , 两边积分得 , 即 ln|y|=x2+C1, 从而 . 因为仍是任意常数, 把它记作C, 便得所给方程的通解 .

注意事项

本文(第七章-微分方程)为本站会员(F****n)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.