电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > DOC文档下载
分享到微信 分享到微博 分享到QQ空间

A New Visco-Plastic Device for Seismic Protection of structures

  • 资源ID:90215652       资源大小:27.29MB        全文页数:241页
  • 资源格式: DOC        下载积分:8金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要8金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

A New Visco-Plastic Device for Seismic Protection of structures

A New Visco-Plastic Device for Seismic Protection of Structures Yasser El-Husseini Ibrahim Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Civil and Environmental Engineering Dr. Finley A. Charney Dr. Thomas M. Murray Dr. Raymond H. Plaut Dr. Carin L. Roberts-Wollmann Dr. Mahendra P. Singh 02-07-2005 Blacksburg, VA Keywords: Visco-plastic, Viscoelastic, Dampers, Passive control, Seismic, Earthquakes. Copyright 2005, Yasser Ibrahim A New Visco-Plastic Device for Seismic Protection of Structures Yasser E. Ibrahim Abstract A new visco-plastic damper for seismic protection is introduced. This device combines and enhances many of the proven characteristics of both displacement-dependent and velocity-dependent devices. The device consists of a block of a high-damping viscoelastic material sandwiched between two steel shapes (plates or channels) bent in a certain configuration to amplify the deformations in the device in order to obtain large tensile and compressive strains in the viscoelastic material. Under low levels of vibrations, the device dissipates energy through amplified strains in the viscoelastic material only; however, under moderate to strong levels of vibrations, a new source of energy dissipation is added through the yielding of the steel elements. The inelastic behavior of the steel elements is controlled by the rigidity of the viscoelastic material. In addition to the energy dissipation, the device provides stiffness through the steel elements as well as the viscoelastic material. Moreover, one of the main advantages of the device is that its behavior is fully controlled through different parameters. First, a nonlinear time history analysis was conducted on structures with a preliminary model of the device using SAP2000 program to check the effectiveness of the device on the response of different structures under ground excitations. The device resulted in better improvement in the structural response compared to the existing viscoelastic dampers. A three-dimensional finite element model was developed for the device using the finite element package, ABAQUS. The hyperelastic and viscoelastic behavior of the block of the viscoelastic material were considered. The inelastic behavior of the steel elements was considered as well using the Von Mises yielding criterion. The device was analyzed under different dynamic loadings with different frequencies. Three simplified models were developed using SAP2000 program in order to facilitate the modeling of the device for structural engineers. These models were compared to the detailed finite element model to check their accuracy. The best model was used in the analysis of a multi-story steel frame with the visco-plastic devices under different ground excitations. Two different arrangements of the device were considered. The devices caused significant reduction in the story displacements, base shear and bending moment at column bases. Dedication TO: My parents My wife My kids: Mariam and Ahmed Acknowledgement I would like to take the opportunity to express my deepest appreciation and gratitude for all the people who helped me during my work in this research. First I would like to thank my advisor and committee chair, Dr. Finley Charney, for all of his support, guidance, and patience. I have learned a lot from his knowledge and practical experience in the area of Earthquake Engineering and structural Dynamics. It was really a privilege to work with him. I would also like to thank my committee members, Dr. Thomas Murray, Dr. Raymond Plaut, Dr. Carin Roberts-Wollmann and Dr. Mahendra Singh for taking the time to provide valuable insight for my thesis and for all the help they have offered me during the time I have spent at Virginia Tech. I would like to thank my wife for her love, encouragement and support during my work towards the PhD degree. Special thanks for my parents for all what they did for me throughout my life. I owe to them every success I have in my life. Finally, I would like to thank the Egyptian Government which supported me financially to pursue my research here in the United States. TABLE OF CONTENTS Chapter 1: Introduction.1 1.0 Introduction.1 1.1 Objective of the Research.2 1.2 Scope of the Research.3 1.3 Outli

注意事项

本文(A New Visco-Plastic Device for Seismic Protection of structures)为本站会员(ed****2)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.