电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > PPT文档下载
分享到微信 分享到微博 分享到QQ空间

分子动力学讲座课件

  • 资源ID:88136067       资源大小:262.50KB        全文页数:24页
  • 资源格式: PPT        下载积分:25金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要25金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

分子动力学讲座课件

计算材料科学中的模型、算法和多尺度关联 系列讲座 与 讨论 西北工业大学科研处 西北工业大学理学院 西北工业大学材料学院 联合举办 西北工业大学高性能计算中心,III、纳米、亚纳米尺度 一、第一原理方法及其在材料科学中的应用 二、密度泛函方法及其应用 三、从原子分子到纳米尺度 分子力学、分子动力学方法及其应用,从原子分子到纳米尺度 分子力学、分子动力学方法及其应用 Molecular Mechanics / Molecular Dynamics 一、 MM、MD理论基础 二、 MM、MD计算程序 三、 MM、MD方法的应用,一、 MM、MD基础理论 原则上, 第一原理方法在理论上已经能解决所有问题 但计算量太大,计算机资源有限,原子数目较多时,如高分子、蛋白质、原子簇以及研究表面问题、功能材料或材料的力学性能等,实际上难以完成计算 为此,发展了分子力学(Molecular Mechanics, MM)与分子动力学(Molecular Dynamics, MD)方法 它们的应用,又称分子模拟(molecular simulation, molecular modeling) 或 分子设计(molecular design) MM与MD是经典力学方法,针对的最小结构单元不再是电子而是原子 因原子的质量比电子大很多,量子效应不明显,可近似用经典力学方法处理 20 世纪 30 年代, Andrews 最早提出分子力学(MM)的基本思想;40 年代以后得到发展, 并用于有机小分子研究。90年代以来得到迅猛发展和广泛应用,基本思想 事先构造出简单体系(如链段、官能团等各种不同结构的小片段)的势能函数, 简称 势函数 或 力场(force field) 将势函数建成数据库,在形成较大分子的势函数时,从数据库中检索到结构相同的片段,组合成大体系的势函数 利用分子势能随原子位置的变化有极小值的性质,确定大分子的结构即为分子力学(MM) 利用势函数,建立并求解与温度和时间有关的牛顿运动方程,得到一定条件下体系的结构随时间的演化关系即为分子动力学(MD) 理论方法的核心是构造势函数 势函数:势能与原子位置的关系。且往往是不知道的 需要通过其他方法,如量子化学方法及实验数据获得,分子势函数曲面势能面示意图,1、分子力场 分子片段力场的函数表达式中包含自变量和力场参数 其中自变量为分子的结构参数,独立参数为键长、键角和二面角,如图,而 力场参数 一般通过与实验数据 和 从头算数据进行最小二乘法拟合来确定,势函数形式很多,目前已被广泛使用的力场有如CFF、MM2、MM3、MM4、MMFF、AMBER、CHARMM、DREIDING、UFF和COMPASS等 形式虽多, 但一般总表达为分子内与分子间势能之和: V总=V键合+V非键合 分子内势能(键合)包括键伸缩、键角弯曲和二面角扭转势能 分子间势能(非键合)包括范德华势和静电势, 有的还包括H键: V键合=V键伸缩+V键角弯曲+V二面角扭转 V非键合=V范德华+V静电+V氢键 键合势函数中,一些力场还包含交叉项,使精度更高 交叉项的含义:如键长变化时,键角弯曲势能随键长的不同而不同,等,例: COMPASS-98力场(condensed-phase optimized molecular potentials for atomistic simulation studies)的表达式如下 每个k是一独立的力场参数,下标“0”代表参考(平衡)结构参数:,显然是一个非谐性力场,力场参数k最小二乘法确定 基本思想 如:R-COOH基团 1) 由ab initio (构型优化方法)计算出 平衡结构,得到 参考结构参数bi0, i0, i0 2) 用伪随机数方法将bi0, i0, i0人为改变成若干(n)组 非平衡结构参数 bi, i, il (l=1,2, , n) 3) 用各bi, i, il 结构参数分别进行ab initio计算,得到bi, i, il 结构参数下对应的能量El (l=1,2, , n) 4) 将El (l=1,2, , n)和bi, i, il代入势能表达式 5) 用最小二乘法拟合,确定力场参数k,非键合势函数中,静电相互作用表示分子中各原子静电荷的库仑相互作用对势能的贡献 不同的力场,静电相互作用表达式基本相同 范德华势也大都采用Lennard-Jones函数,但函数中的指数有所不同。如COMPASS-98的非键合势函数为:,静电相互作用:,其它力场范德华势较多采用L-J 12-6函数:,当然,在建立分子的势能函数时,还有一些更细致的问题要考虑,如: 势能展开项的截断 周期结构的处理 多组分混合物体系 含有离子的体系 或 金属中的离子 等 不同的方法或程序中,分别都有更详细的讨论。参考: 德 D. 罗伯. 计算材料学. 北京:化学工业出版社, 2002, 9 俞庆森,朱龙观. 分子设计导论.北京:高等教育出版社,2000 杨小震. 分子模拟与高分子材料. 北京:科学出版社,2002 熊家炯主编. 材料设计. 天津:天津大学出版社,2000 Sun H,Ren P, Fried J R. The COMPASS Force Field: Parameterization and Validation for polyphosphazenes. Computational and Theoretical Polymer Science, 1998, 8(1/2): 229 Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem., 1998, 102: 7338,2、分子力学方法 MM是确定分子结构的方法 利用分子势能随结构的变化而变化的性质,确定分子势能极小时的平衡结构(stationary point) 物理模型: 视原子为质点,视化学键为弹簧,而弹力常数完全由数据库中的分子力场来确定 因此是直接用势函数研究问题,不考虑原子的动能 不考虑动能所对应的结构,相当于体系处于 T=0 K 时的结果,由力场首先构造并得到分子的势函数E(x) 利用在E(x)的极小点处,E(x)随各原子独立的空间坐标xi, i=1,2,3,3N-6 (与内坐标ri、i、i等价) 的一阶微分=0以及全部二阶微分0的数学条件:,进行结构优化 具体步骤: 1) 用各种方法构造出一个分子的任意结构,得到初始的结构参数xi0, i=1,2,3,3N-6 2) 进行坐标变换,即根据需要将原子的直角坐标转变成内坐标ri、i、i或反之,1) 用各种方法构造出一个分子的任意结构,得到初始的结构参数xi0, i=1,2,3,3N-6 2) 进行坐标变换,即根据需要将原子的直角坐标转变成内坐标(键长、键角、二面角)或反之 3) 建立分子体系的势能表达式E(x) 4) 计算E(x)随各坐标的一阶、二阶导数 5) 计算接近数学条件的坐标增量 6) 得到新的结构参数xi1, i=1,2,3,3N-6 重复 4)、5)、6),直至最后两次得到的体系势能之差或总体势能梯度的均方根值达到预定精度范围为止 MM计算中,有时还要考虑体系所处的外压条件,此时,可通过压力因子的定义来调节原子坐标,(i=1,2,3,3N-6),3、分子动力学方法 分子力场是分子的静态势函数 而实际过程通常是在一定温度和一定压力下发生的 为了更切实际地了解体系运动和演化的过程,必须考虑体系中原子的运动,并与温度T和时间t建立联系 我们知道,温度是原子分子热运动剧烈程度的量度 根据统计热力学,对于n个原子的体系,体系的温度T与各原子的运动速率vi的关系为:,又因体系中各原子的速率为vi时,动量pi=mivi,对应总动能K(p)为:,势能由力场确定为E(x),因此体系的Hamilton量H为:,与量子力学不同,经典力学对Hamilton量不进行算符化处理,也不建立和求解本征方程,而是建立并求解经典运动方程:,计算过程一般为:在一定的统计系综下 1) 由原子位置和连接方式,从数据库调用力场参数并形成体系势函数 2) 由给定温度计算体系动能以及总能量 3) 计算各原子的势能梯度, 得到原子在力场中所受的力 即dp/dt=mdv/dt=ma=F,1) 由原子位置和连接方式,调用力场参数并形成体系势函数 2) 由给定温度计算体系动能以及总能量 3) 计算各原子的势能梯度, 得到原子在力场中所受的力 即 dp/dt=mdv/dt=ma=F 4) 对每个原子,在一定时间间隔内,用牛顿方程求解其运动行为:,5) 显示体系能量和结构 6) 取下一时间间隔,返回步骤 1) 不断循环反复,可设定循环次数或强行终止计算 其中, 不仅时间间隔可以根据需要取不同大小(一般1 fs=10-15 s),温度可以任意设定,而且还可以在循环过程中逐渐改变温度,即研究体系的退火(annealing)行为,有时需要进一步考虑外场的作用,如压力、电场、磁场、重力场等 从原则上讲,这些问题都不难解决,而且还在进一步发展中,不再赘述 此外,即使是分子力学与分子动力学方法,也受计算量的限制,所处理的体系不可能太大,好的计算机可达到数十万百万个原子的规模 (2050 nm以下/ MD 106108个原子罗伯p110) 对于更大(50 nm、微米)尺度的问题,人们也在发展介观尺度(mesoscale)的方法,并且已取得一些成果 分子动力学方法也有一些本质的缺陷 如:势函数精度(客观性) 势函数形式在每次计算中都不变, 故不能模拟如分子在高温下, 结构发生断裂的热裂解过程 (国内引入开关函数已开始做) 此时, 可用QM处理化学变化或e转移, 余用MM,称QM/MM,二、 MM、MD计算程序 因程序结构相对简单,国内外有不少, 且还在不断产生 如:Chem3D, ChemOffice, Cerius2, Material Studio, Alchemy 2000, Sybyl, Biosym, HyperChem x.x, Spartan x.x, Chemgraf, Bilder, Script, COGS, Gaussian-03; MP(Molecular Properties, 杨小震)等 输入:体系模型建模(Builder),选择力场、系综 MM: 无特殊输入 MD: 循环次数(万几10万)、温度、时间间隔(fs), 外场,温度变化速率,其它性质 等 输出: MM: 势能-结构曲线(数值),动态结构图, 其它性质 MD: (同上),及 其它MD性质 注:第一原理及MM一般只能得到势能极小点结构,而MD可越过一些小的势垒,甚至可达到最小点,三、 MM、MD方法的应用 领域:高分子、生命科学、药物设计、催化、半导体 其它功能材料、结构材料等 分子力学是用计算机在原子水平上模拟给定分子模型的结构与性质,进而得到分子的各种物理性质与化学性质,如结构参数、振动频率、构象能量、相互作用能量、偶极矩、密度、摩尔体积、汽化焓等 分子动力学方法能实时将分子的动态行为显示到计算机屏幕上, 便于直观了解体系在一定条件下的演变过程 MD含温度与时间, 因此还可得到如材料的玻璃化转变温度、热容、晶体结晶过程、输送过程、膨胀过程、动态弛豫(relax)以及体系在外场作用下的变化过程等,分子模拟较早应用于高分子问题的研究 应用范围主要包括: 物理性质、结构、构象与弹性、晶体结构、力学性能、玻璃态与玻璃化转变、光谱性质、非线性光学性质、电性质、共混与分子间相互作用等 应用于生物科学和药物设计也十分普及,如蛋白质的多级结构与

注意事项

本文(分子动力学讲座课件)为本站会员(F****n)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.