电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
ImageVerifierCode 换一换
首页 金锄头文库 > 资源分类 > PPT文档下载
分享到微信 分享到微博 分享到QQ空间

不定积分换元法积分技巧PPT

  • 资源ID:591455170       资源大小:1.28MB        全文页数:75页
  • 资源格式: PPT        下载积分:20金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要20金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

不定积分换元法积分技巧PPT

第二节第二节 不定积分的换元积分法不定积分的换元积分法一、第一类换元法一、第一类换元法二、第二类换元法二、第二类换元法三、基本积分表三、基本积分表1问题问题解决方法解决方法利用复合函数,设置中间变量利用复合函数,设置中间变量.过程过程令令一、第一类换元法一、第一类换元法2在一般情况下:在一般情况下:设设则则如果如果(可微)(可微)由此可得换元法定理由此可得换元法定理3第一类换元公式第一类换元公式(凑微分法凑微分法)说明说明使用此公式的关键在于将使用此公式的关键在于将化为化为观察重点不同,所得结论不同观察重点不同,所得结论不同.定理定理1 14例例1 1 求求解解(一)(一)解解(二)(二)解解(三)(三)5例例2 2 (1) 求求解解6例例2 2 (2) 求求解解一般地一般地7例例3 3 求求解解8例例4 4 (1) 求求解解9例例4 (2)4 (2) 求求解解10例例5 5 求求解解11例例6 6 求求解解同理可得同理可得(使用了三角函数恒等变形)(使用了三角函数恒等变形)12例例7 7 求求解解13例例8 (1)8 (1)求求解解14例例8 8 (2) 求求解解15例例8 8 (3) 求求解解16例例8 8 (4)求求解解17求求由例由例8可知可知:18例例9 9 求求解解19例例1010 (1) 求求(2) 求求20例例1010 (1) 求求解解(2) 求求解解21例例11 (1)11 (1) 求求(2) 求求(3) 求求(4) 求求22例例11 (1)11 (1) 求求解解23例例1111 (2) 求求解解24例例1111 (3) 求求解解(4) 求求解解25例例1212 求求原式原式解解26例例1313 求求解解27例例1414 (1)求求解解28例例1414 (2)求求解解29例例1515 (1) 求求解解30例例1515 (1) 求求(2) 求求解解31例例1515 (1) 求求(2) 求求解解(3) 求求32例例1616 求求解解说明说明 当被积函数是三角函数相乘时,拆开奇当被积函数是三角函数相乘时,拆开奇次项去凑微分次项去凑微分.33例例1717 求求解解34例例1818 求求解解(一)(一)(使用了三角函数恒等变形)(使用了三角函数恒等变形)35解解(二)(二)类似地可推出类似地可推出36例例19 19 求求解解37例例2020 求求解解(使用了三角函数恒等变形)(使用了三角函数恒等变形)38例例2121 (1) 求求解解39例例2121 (2) 求求解解40例例2222 求求解解41例例 求求解解42例例 求求解解43问题问题解决方法解决方法改变中间变量的设置方法改变中间变量的设置方法.过程过程令令(应用(应用“凑微分凑微分”即可求出结果)即可求出结果)二、第二类换元法44证证设设 为为 的原函数的原函数,令令则则即有换元公式即有换元公式:定理定理2 245第二类积分换元公式第二类积分换元公式46例例1 1 求求解解 令令47例例2 2 求求解解 令令48例例3 3 求求解解 令令49例例4 4 求求解解令令50例例5 5 求求解解 令令51再令再令52例例6 6 求求解解 令令53再令再令54说明说明(1)(1) 以上几例所使用的均为以上几例所使用的均为三角代换三角代换.三角代换的三角代换的目的目的是化掉根式是化掉根式.一般规律如下:当被积函数中含有一般规律如下:当被积函数中含有可令可令可令可令可令可令55说明说明(2)(2) 积分中为了化掉根式除采用三角代积分中为了化掉根式除采用三角代换外还可用换外还可用双曲代换双曲代换.也可以化掉根式也可以化掉根式例例 中中, 令令56 积分中为了化掉根式是否一定采用积分中为了化掉根式是否一定采用三角代换(或双曲代换)并不是绝对的,需三角代换(或双曲代换)并不是绝对的,需根据被积函数的情况来定根据被积函数的情况来定.说明说明(3)(3)例例7 7 求求(三角代换很繁琐)(三角代换很繁琐)令令解解57例例8 8 求求解解 令令58说明说明(4)(4) 当分母的阶较高时当分母的阶较高时, 可采用可采用倒代换倒代换例例9 9 求求令令解解59例例1010 求求解解令令(分母的阶较高)(分母的阶较高)6061说明说明(5)(5) 当被积函数含有两种或两种以上的当被积函数含有两种或两种以上的根式根式 时,可采用令时,可采用令 (其中(其中 为各根指数的为各根指数的最小公倍数最小公倍数) 例例1111 求求解解令令62三、基本积分表基本积分表636465四、小结两类积分换元法:两类积分换元法:(一)(一)凑微分凑微分(二)(二)三角代换、倒代换、根式代换三角代换、倒代换、根式代换基本积分表基本积分表(2) 第一类换元积分是把被积函数中的第一类换元积分是把被积函数中的某个函数看做一个新变量某个函数看做一个新变量. 第二类换元积分是把积分变量看做第二类换元积分是把积分变量看做一个函数一个函数.66思考题思考题求积分求积分67思考题解答思考题解答68练练 习习 题题69707172练习题答案练习题答案737475

注意事项

本文(不定积分换元法积分技巧PPT)为本站会员(鲁**)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.