电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > DOC文档下载
分享到微信 分享到微博 分享到QQ空间

模具专业外文文献翻译-外文翻译--一种关于粗糙集改进注射模具浇道的报告

  • 资源ID:378821940       资源大小:732.01KB        全文页数:24页
  • 资源格式: DOC        下载积分:20金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要20金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

模具专业外文文献翻译-外文翻译--一种关于粗糙集改进注射模具浇道的报告

附录附录1An Improved Rough Set Approach to Design of Gating Scheme for Injection MouldingF. Shi,1 Z. L. Lou,1 J. G. Lu2 and Y. Q. Zhang1 1Department of Plasticity Engineering, Shanghai Jiaotong University, P. R. China; and 2Center of CAD, Nanjing University of Chemical Technology, P. R. ChinaThe gate is one of the most important functional structures in an injection mould, as it has a direct influence on the quality of the injection products. The design of a gating scheme includes the selectionof the types of gate and calculation of the sizes and determination of the location, which depends heavily on prior experience and knowledge and involves a trial-and-error process. Due to the vagueness and uncertainty in the design of a gating scheme, classical rough set theory is not effective. In this paper, a fuzzy rough set model is proposed, which is not based on equivalent relationships but on fuzzy similarity relationships. An inductive learning algorithm based on the fuzzy rough set model (FRILA) is then presented. Compared to decision tree algorithms, the proposed algorithm can generate fewer classification rules; moreover, the generated rules are more concise. Finally, an intelligent prototype system for the design of a gating scheme based on an induced fuzzy knowledge base is developed. An illustrative example proves the effectiveness of the proposed method.Keywords: Fuzzy rough set; Gating scheme; Injection mold; Intelligent design; Knowledge acquisition1. Introduction The manufacturing industry for plastic products has been growing rapidly in recent years, and plastics are used widely to substitute for metals. The injection moulding process is the most popular moulding process for making thermoplastic parts. The feeding system, which is one of the important functional structures, comprises a sprue, a primary runner, a secondary runner and a gate. The molten plastic flows from the machine nozzle through the sprue and runner system and into the cavities through the gate. Acting as the connection between the runner and the cavity, the gate can influence directly the mould venting, the occurrence of jetting, the location of weld lines, and warpage, shrinkage and residual stresses. Hence, the gate design is important for assuring the quality of the mould.The design of a gate includes the selection of the type of gate, calculation of the size and determination of the location. And the design of a gate is based on the experience and knowledge of the designers. The determinations of the location and sizes are made based on a trial-and-error process. In recent years, a feature-modelling environment and intelligent technology have been introduced for gate design. Lee and Kim investigated gate locations using the evaluation criteria of warpage, weld lines and izod impact strength. A local search was used to determine the nodes of the location of the gate 1. Saxena and Irani proposed a frame for a non-manifoldtopology-based environment. A prototype system for gate location design was developed. The criteria for evaluation were based on geometry-related parameters 2. Lin selected the injection location and size of the gate as the major control parameters, and chose the product performance (deformation) as the optimising parameter. Combining the technologies of abductive networks and simulation annealing optimisation algorithms, the optimal model for the location and size of the gate was constructed 3,4. Zhou et al. established a rule set for determining the location of the gate based on analysis of the plastic parts. The location of the gate was determined through reasoning with rules 5. Pandelidis et al. developed a system which can optimise gate location based on the initial gating plans. The system used MOLDFLOW software for flow analysis, and controlled the temperature differential and the number of elements overpacked with an optimisation strategy 6.Deng used ID3 and its modified algorithms to generate the rule set for the selection of the gate types 7. However, there are many fuzzy or vague attributes in the selection of the types, such as the attribute of loss of pressure that has two fuzzy linguistic variables i.e. can be high and must be low. The ID3 algorithms cannot deal with fuzzy or “noise” information efficiently. It is also difficult to control the size of the decision tree extracted by the algorithms and sometimes very large trees are generated, making comprehensibility difficult 7,8.Rough set theory provides a new mathematical approach to vague and uncertain data analysis 9,10. This paper introduces the theory of rough sets for the design of a gating scheme. The selection of the type of gate is based on the theory of rough sets. Considering the limitations of rough sets, this paper proposes an improved approach based on rough set theory for the design of the gating scheme. The improved rough set approach to the scheme design will be given first. A fuzzy rough-set-base

注意事项

本文(模具专业外文文献翻译-外文翻译--一种关于粗糙集改进注射模具浇道的报告)为本站会员(cn****1)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.