电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > DOC文档下载
分享到微信 分享到微博 分享到QQ空间

机械专业外文文献翻译-外文翻译--大跨度FRP网架结构的展望和分析

  • 资源ID:378821660       资源大小:165KB        全文页数:22页
  • 资源格式: DOC        下载积分:20金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要20金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

机械专业外文文献翻译-外文翻译--大跨度FRP网架结构的展望和分析

中国石油大学(华东)本科毕业设计(论文)Development and analysis of the large-span FRPwoven web structureABSTRACT: An innovative large-span structural system, namely the FRP woven web structure (FRPWWS), is introduced in this paper. In an FRPWWS, the high-strength FRP strips are “woven” like bamboo strips in a Chinese bamboo mat to form a plane web. The outer edge of the web is anchored on an outer ring beam, and an inner ring beam is provided to anchor the FRP strips at the center of the web. The stiffness of the web to resist various loads is derived from the initial prestressing during the “weaving” stage and the additional tensioning as a result of the out-of-plane movement of the inner ring beam. As a result of the high strength-to weight ratio of FRP, this new structural form offers an attractive option for the construction of spatial structures with spans longer than are possible with conventional structural materials. In this paper, the basic layout and construction procedure for a simple FRPWWS is first presented. Three basic weaving patterns are next explained. Several variations of the basic structural system are also proposed. A simple mechanical model is presented for the deformation of individual FRP strips. Results from a finite element analysis of an example structure are also given. The results of these analyses confirm the feasibility of the FRPWWS.1 INTRODUCTION FRP is a new kind of structural material, whose use in civil engineering has been actively explored in recent years. Due to its favorable properties like corrosion resistance, high strength, low weight, good fatigue performance, and low maintenance cost, it is considered to be an ideal material for constructing long-span structures in the new century. However, its mechanical properties are distinctly different from those of traditional structural materials in some aspects, such as its anisotropy. Due to the unique properties of FRP, it is necessary to explore new forms of large-span structures for its efficient use and for achieving spans larger than are possible with traditional materials. For example, Maeda et al. (2002) have conceived a 5000 meter-span suspension bridge using FRP. The FRP woven web structure, a new large-span structural system, is presented in this paper. This new system represents an attempt aimed at the efficient utilization of the unique characteristics of FRP in a large-span roof. In an FRPWWS, the high strength FRP strips are woven like bamboo strips in a Chinese bamboo mat to form a plane web. The outer edge of the web is anchored on an outer ring beam, and an inner ring beam is provided to anchor the FRP strips at the center of the web. A small-scale model of a simple FRPWWS is shown in Figure 1. The FRP strips are initially prestressed to a limited extent to keep them straight during “weaving”. Then, the FRP web is tensioned by a displacement of the inner ring beam in the out-of plane direction, which is effected either by a set of prestressed tendons or by suspending a heavy mass from the inner ring beam. As a result, a tensioned FRP web, whose geometric stiffness is able to resist a variety of loads, forms a large-span roof system with the two rings. The FRPWWS resembles the cable net structure and the cable-membrane structure: their members are flexible; and the geometric stiffness resulting from tension is utilized to resist loads. However, the FRPWWS has its unique advantages: (1) the FRP strips are ideal for super large-span structures due to their low self-weight and their superior material properties in the lengthwise direction, which are efficiently utilized, while the weakness of inferior properties in the transverse directions is not exposed; (2) significant damping can be expected to arise from friction at joints between FRP strips, which can enhance the resistance of the structure to wind and earthquake loads; (3) the regular weaving pattern leads to an aesthetically pleasing surface; and (4) the corrosion resistance of FRP and the ease of installation because of its lightweight translate into low maintenance costs.In this paper, the basic layout and construction procedure for a simple FRPWWS system is presented in detail. The weaving patterns in plane aresummarized into three types. Some spatial FRPWWS forms for practical applications are also proposed. A simple mechanical model for individual FRP strips in the web is presented. Results from the finite element analysis of a simple FRPWWS are also described.2 LAYOUT OF A SIMPLE FRPWWSA simple FRP woven web structure is composed of a FRP woven web, an outer ring beam and an inner ring beam for anchorage, and an additional weight or a set of prestressed tendons, as shown in Figure 1. The web is woven with FRP strips, and CFRP strips or other high-performance hybrid FRP strips are suggested. CFRP strips, which have been widely used to strengthen concrete structures in recent years, are manufactured by pultrusion in general, with

注意事项

本文(机械专业外文文献翻译-外文翻译--大跨度FRP网架结构的展望和分析)为本站会员(新**)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.