电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > DOCX文档下载
分享到微信 分享到微博 分享到QQ空间

多晶硅薄膜的制备方法

  • 资源ID:237648842       资源大小:26.25KB        全文页数:7页
  • 资源格式: DOCX        下载积分:10金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要10金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

多晶硅薄膜的制备方法

多晶硅薄膜的制备方法 摘要:低压化学气相沉积、固相晶化、准分子激光晶化、快速热退火、金属诱导晶化、等离子体增强化学反应气相沉积等是目前用于制备多晶硅薄膜的几种主要方法。它们具有各自不同的制备原理、晶化机理、及其优缺点。 关键词:氢化非晶硅 多晶硅 晶化 6 等离子体增强化学反应气相沉积(PECVD) 等离子体增强化学反应气相沉积(PECVD)法是利用辉光放电的电子来激活化学气相沉积反应的。起初,气体由于受到紫外线等高能宇宙射线的辐射,总不可避免的有轻微的电离,存在着少量的电子。在充有稀薄气体的反应容器中引进激发源(例如,直流高压、射频、脉冲电源等),电子在电场的加速作用下获得能量,当它和气体中的中性粒子发生非弹性碰撞时,就有可能使之产生二次电子,如此反复的进行碰撞及电离,结果将产生大量的离子和电子。由于其中正负粒子数目相等。故称为等离子体,并以发光的形式释放出多余的能量,即形成“辉光”。在等离子体中,由于电子和离子的质量相差悬殊,二者通过碰撞交换能量的过程比较缓慢,所以在等离子体内部各种带电粒子各自达到其热力学平衡状态,于是在这样的等离子体中将没有统一的温度,就只有所谓的电子温度和离子温度。此时电子的温度可达104,而分子、原子、离子的温度却只有25300。所以,从宏观上来看,这种等离子的温度不高,但其内部电子却处于高能状态,具有较高的化学活性。若受激发的能量超过化学反应所需要的热能激活,这时受激发的电子能量(110eV)足以打开分子键,导致具有化学活性的物质产生。因此,原来需要高温下才能进行的化学反应,通过放电等离子体的作用,在较低温度下甚至在常温下也能够发生。PECVD法沉积薄膜的过程可以概括为三个阶段:1.SiH4分解产生活性粒子Si、H、SiH2 和SiH3等;2.活性粒子在衬底表面的吸附和扩散;3.在衬底上被吸附的活性分子在表面上发生反应生成Poly-Si层,并放出H2;研究表面,在等离子体辅助沉积过程中,离子、荷电集团对沉积表面的轰击作用是影响结晶质量的重要因素之一。克服这种影响是通过外加偏压抑制或增强。对于采用PECVD技术制备多晶体硅薄膜的晶化过程,目前有两种主要的观点.一种认为是活性粒子先吸附到衬底表面,再发生各种迁移、反应、解离等表面过程,从而形成晶相结构,因此,衬底的表面状态对薄膜的晶化起到非常重要的作用.另一种认为是空间气相反应对薄膜的低温晶化起到更为重要的作用,即具有晶相结构的颗粒首先在空间等离子体区形成,而后再扩散到衬底表面长大成多晶膜。对于Si4:2气体系统,有研究表明,在高氢掺杂的条件下,当用RF PECVD的方法沉积多晶硅薄膜时,必须采用衬底加热到600以上的办法,才能促进最初成长阶段晶核的形成。而当衬底温度小于300时,只能形成氢化非晶硅(a-Si:)薄膜。以Si4:2为气源沉积多晶硅温度较高,一般高于600,属于高温工艺,不适用于玻璃基底。目前有报道用SiC14:H2或者SiF4:H2为气源沉积多晶硅,温度较低,在300左右即可获得多晶硅,但用CVD法制备得多晶硅晶粒尺寸小,一般不超过50nm,晶内缺陷多,晶界多。 7 金属横向诱导法(MILC)20世纪90年代初发现a-Si中加入一些金属如Al,Cu,Au,Ag,Ni等沉积在a-SiH上或离子注入到a-SiH薄膜的内部,能够降低a-Si向p-Si转变的相变能量,之后对Ni/a-Si:H进行退火处理以使a-Si薄膜晶化,晶化温度可低于500。但由于存在金属污染未能在TFT中应用。随后发现Ni横向诱导晶化可以避免孪晶产生,镍硅化合物的晶格常数与单晶硅相近、低互溶性和适当的相变能量,使用镍金属诱导a-Si薄膜的方法得到了横向结晶的多晶硅薄膜。横向结晶的多晶硅薄膜的表面平滑,具有长晶粒和连续晶界的特征,晶界势垒高度低于SPC多晶硅的晶界势垒高度,因此,MILC TFT具有优良的性能而且不必要进行氢化处理。利用金属如镍等在非晶硅薄膜表面形成诱导层,金属Ni与a-Si在界面处形成NiSi2的硅化物,利用硅化物释放的潜热及界面处因晶格失错而提供的晶格位置,a-Si原子在界面处重结晶,形成多晶硅晶粒,NiSi2层破坏,Ni原子逐渐向a-Si层的底层迁移,再形成NiSi2硅化物,如此反复直a-Si层基本上全部晶化,其诱导温度一般在500,持续时间在1O小时左右,退火时间与薄膜厚度有关。 金属诱导非晶硅晶化法制备多晶硅薄膜具有均匀性高、成本低、相连金属掩蔽区以外的非晶硅也可以被晶化、生长温度在500。但是MILC目前它的晶化速率仍然不高,并且随着热处理时间的增长速率会降低。我们采用MILC和光脉冲辐射相结合的方法,实现了a-Si薄膜在低温环境下快速横向晶化。得到高迁移率、低金属污染的多晶硅带。 8 结束语除了上述几种制备多晶硅薄膜的主要方法外,还有超高真空化学气相沉积(UHV/CVD )、 电子束蒸发等。用UHV/CVD生长多晶硅,当生长温度低于550时能生成高质量细颗粒多晶硅薄膜,不用再结晶处理,这是传统CVD做不到的,因此该法很适用于低温多晶硅薄膜晶体管制备。另外,日立公司研究指出,多晶硅还可用电子束蒸发来实现,温度低于530。因此,我们相信随着上述几种多晶硅制备方法的日益成熟和新的制备方法的出现,多晶硅技术的发展必将跨上一个新的台阶,从而推动整个半导体产业和相关行业的发展。参考文献:1 懂会宁等,非晶硅的二步快速退火固相晶化,四川大学学报J, 1995, 0l:95972 曾祥斌。多晶硅薄膜的新型激光晶化制备方法J电子元件与材料,2000,01:783 刘传珍等。激光退火法低温制备多晶硅搏膜的研究J。液晶与显示,2000,01:46514 刘传珍等。金属诱导法低温多晶硅薄膜的制备与研究J。半导体学报,2001,01:61655 邱法斌等。准分子激光烧结玻璃衬底上多晶硅薄膜材料的制备J。液晶与显示,2001,03:1701746 卓铭。金属Ni诱导横向晶化的结构及工艺进程的优化J。半导体学报,2002,11:121712237 刘丰珍。等离子体-热丝CVD技术制备多晶硅薄膜J。半导体学报,2003,05:4995038 邱春文等。PECVD法低温沉积多晶硅薄膜的研究J。液晶与显示,2003,03:2012049 Giust G.K, Sigmon T.W. Laser-processed thin-film transistors fabricated from sputtered amorphous silicon films. IEEE Trans Electron Devices, 2000, 47(1):20710 WangWen,MengZhi guo, Low Temperature Metal Induced Laterally Crystallized Polycrystallline S-ilicon Material and DeviceTechnology,2003,5:87 11 Zhu M,Guo X,et al.Thin Solid Films, 2000, 205306 7

注意事项

本文(多晶硅薄膜的制备方法)为本站会员(m****a)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.