电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本
换一换
首页 金锄头文库 > 资源分类 > PDF文档下载
分享到微信 分享到微博 分享到QQ空间

变分法讲义_第四章

  • 资源ID:115952403       资源大小:388.76KB        全文页数:15页
  • 资源格式: PDF        下载积分:10金贝
快捷下载 游客一键下载
账号登录下载
微信登录下载
三方登录下载: 微信开放平台登录   支付宝登录   QQ登录  
二维码
微信扫一扫登录
下载资源需要10金贝
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
1、金锄头文库是“C2C”交易模式,即卖家上传的文档直接由买家下载,本站只是中间服务平台,本站所有文档下载所得的收益全部归上传人(卖家)所有,作为网络服务商,若您的权利被侵害请及时联系右侧客服;
2、如你看到网页展示的文档有jinchutou.com水印,是因预览和防盗链等技术需要对部份页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有jinchutou.com水印标识,下载后原文更清晰;
3、所有的PPT和DOC文档都被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;下载前须认真查看,确认无误后再购买;
4、文档大部份都是可以预览的,金锄头文库作为内容存储提供商,无法对各卖家所售文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;
5、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据;
6、如果您还有什么不清楚的或需要我们协助,可以点击右侧栏的客服。
下载须知 | 常见问题汇总

变分法讲义_第四章

1oÙ Euler-Lagrange § §1 Euler-Lagrange1§ f(x,y,z),fy(x,y,z),fz(x,y,z) C(R3)§ K¼ F(y) = Z b a f(x,y(x),y0(x)dx = Z b a fy(x)dx ½ÂD= C1a,b =Y y,v Y F(y;v) = Z b a (fyy(x)v(x) + fzy(x)v0(x)dx 5. ?f(x,y,z) = f(x,y)عz§Y=D= Ca,b F(y;v) = Z b a fy(x,y(x)v(x)dx ·K. eé,:y0Y,F(y0;v) = 0,v D0Y§K d dxfzy(x) = fyy(x) x (a,b) £Euler-Lagrange1§¤ F(y0;v) = fzy(x)v(x)|b a, v Y y² Ún2 d dxfzy(x) = fyy(x)§ ©ÜÈ© FLª“ ½Â. ¡y D¼F7:§e d dxFz = fy ½¡yf7:¼ê“ 1 21§A«A2 §2 1§A«A A. f(x,y,z) = f(z)§ dfy 0 fzy(x) const = f0(y0(x) AO/§ y0(x) const½´Euler-Lagrange§)“ 1. Ρþ᧠x = cos y = sin z = z() J(z) = R1 0 px02() + y02() + z02()d = R1 0 p1 + z02()d D = z C10, z(0) = 0, z(1) = z1 fz= z 1+z2 = const,z = const, z0() = const, z = z1 1(Ú) B. F(x,y,z) = f(x,z) fz(x,y0(x) = fzy(x) const?5¼êÒؽ´) 2. ¥¡þ᧠L() = R Z 1 0 q 1 + 02()sin2d f(,0) = f(,0) = R p 1 + 02sin2 f0= Rsin2 p 1 + 02sin2 R 0sin2 p 1 + 02sin2 const 0 0 C. f(x,y,z) = f(y,z) d dxf(y(x),y 0(x) = fyy0 + fy0y00= fyy0+ (fy0y0)0 (fy)0y0 d dx(f y 0fy0) = y0(fy0)0 fy) = 0 f y0fy0 const 21§A«A3 3. f(y,z) = y2(1 z)2 fz= 2y2(z 1) y2(1 y0)2 y0(2y2(y0 1) = C y2y02= y2 C Pu = y2 C u02= 4u euk“: u 0 y0 C euÓ:§u 0 u0= ±2u u0 = ±1 u = (x + C1)2y2= C + (x + C1)2 eD = y C21,1, y(1) = 0, y(1) = 1 f3Dþ7:¼êy0= q (x + 1)(x 1 2) / C 21,1§Ã“ ?y0´f3D = y C1a,b, y(1) = 1, y(2) = 3 2þ7:¼ê“ 4. ü¯K7:¼ê T(y) = 1 2g Z x1 0 p1 + y02(x) y(x) dx D = y C10,x1, y(0) = 0, y(x1) = y1, y(x) 0, x (0,x1), Rx1 0 1 y(x)dx 0§y16 0 ? =k±(0,0)©:§L(x1,y1):Ó“(!) y² ey1= 0§ Kr = x1 2=“ ey16= 0 x y = sin 1 cos + 2 0 0 0+ ( sin 1 cos )0= 2(1 cos) sin (1 cos)2 = cos 2 (sin 2) 3(tan 2 2) 0 !1§ ¦x1 y1 = 1sin1 1cos1 r = x1 1sin1 ?0 0, y(0) = 0, y(x1) = y1 0 Rx1 0 1+y02(x) y(x) dx x F(y) = R1 0 y xdx y²FÃ7:¼ê“ y²y0= x´4?¼ê“ ?yF(y0;v) = 0 v Dad(y0) §4 gdà:¯KI§ g,. D = y C1a,b, y(b) = b1 x = a:´gd.§ ½=y(a)?¿“ F(y) = Z b a fy(x)dx y D Dad(y) = v C1a,b, v(b) = 0 Ïd§ ey0 D´F3DþÛÜ4:§ K d dxfy 0y0(x) = fyy0(x) x a,b F(y0;v) = Z b a fyv + fy0v0= fy0v|b a v C1a,b AO/§ ?v Dad(y)§ 0 = F(y0;v) = fy0y0(a)v(a) v = b x fy0y0(a) = 0g,. y0(b) = b1r5. Ó§ éuD = y C1a,b, y(a) = a1þ4¼ê½÷v fy0y0(b) = 0 y0(a) = a1 AµBernoulleü T(y) = 1 2g Z x1 0 p1 + y 02 ydx 5p¼êmþ¼EULER-LAGRANGE§10 D = y 0,x1|y(x) 0, x (0,x1 y(0) = 0, y C10,x1, Z x1 0 p1 + y 02 ydx . 0 = fy0y(x1) = y0(x1) py(x 1) p1 + y02(x 1) Ïdù´±(0,0)©:§ $:3x = x1þÓ“ SK ¦ÑF3DþU4¼ê“ 1. F(y) = R 2 0 y2(x) y02(x) D1= y C10, 2 y(0) = 0, D2 = y C10, 2 y(0) = 1 2. F(y) = R1 0 cosy0(x) D = y C10,1 y(0) = 0 §5 p¼êmþ¼Euler-Lagrange§ f(x,y,z,w) C(a × b × R × R × R) 3 fy,fz,fw F(y) = Rb a f(x,y(x),y0(x),y00(x)dx = Rb a fy(x)dx F½ÂC2a,b y,v C2a,b : F(y;v) = F(y + tv) t |t=0 = Z b a fyy(x)v(x) + fy0y(x)v0(x) + fy00y(x)v00(x) ¦F3D = y C2a,b|y(a) = a1, y(b) = b1, y0(a) = a2, y0(b) = b2þÛÜ4? :y0U÷v7“ Dad(y) = v C2a,b|v(a) = v0(a) = v(b) = v0(b) = 0 0 = F(y;v)v Dad(y0) Pg(x) = Rx a fyy(x)dx C1a,b, g0(x) = fyy(x) f(y;v) = Rb afy0y(x) g(x)v 0(x) + fy00y(x)v00(x)dx Ph(x) = Rx a fy0y(x) g(x)dx C1a,b, h0(x) = fy0y(x) g(x) 5p¼êmþ¼EULER-LAGRANGE§11 F(y;v) = Rb afy00y(x) h(x)v 00(x)dx = 0 v Dad(y0) dÚn4§ c1,c2¦ fy00y(x) h(x) = c1x + c2 fy00y(x) = h(x) + c1x + c2 Ïdfy00y(x) C1a,b d dxfy 00y(x) = h0(x) + c1= fy0y(x) g(x) + c1 Ïd d dxfy 00y(x) fy0y(x) = g(x) + c1 C1a,b d dx d dxfy 00y(x) fy0y(x) = fyy(x) ef C2(a,b × R3)§ K fyy(x) d dxfy 0y(x) + d2 dx2 fy00y(x) = 0 x a,b ½Â. f C1(a,b × R3)§ey C2a,b§÷v d dx d dxfy 00y(x) fy0y(x) + fyy(x) = 0 x a,b K¡y´f7:¼ê“ g,.II ¦F3D1= y C2a,b|y0(a) = a2, y(b) = b2þ4¼êy0U÷v7 µ Dad(y0) = v C2a,b|v0(a) = v(b) = 0 D1 0 = v C2a,b|v(a) = v(b) = v0(a) = v0(b) = 0 Ïd§ y0÷vEuler-Lagrange§§ =y07´f7:¼ê“ Ï § v Dad(y0) 0 = F(y0;v) = Z b a fyv + fy0v0+ fy00v00 = Z b a fyv + (fy0 d dxfy 00)v0 + fy00v0|b a = Z b a (fy d dx(fy 0 d dxfy 00)v + (fy0 d dxfy 00)v|b a+ fy00v 0|b a = fy0y(a) d dxfy 00y(x)|x=av(a) + fy00y(b)v0(b) v = (x a)2(x b) fy00y(b) = 0g,. v = (x a)2(x a ab 2 ) fy0y(a) d dxfy00y(x)|x=a = 0g,. 6þ¼êmþ¼EULER-LAGRANGE§12 §6 þ¼êmþ¼Euler-Lagrange§ F(Y ) = Rb a f(x,Y (x),Y 0(x)dx = Rb a fY (x)dx f,fY,fZþ3a,b × Rn× RnþëY fY= fy1 . . . fyn , fZ= fz1 . . . fzn , Y 0(x) = y0 1(x) . . . y0 n(x) D= Y (C1a,b)n Y,V DY (x) = y0 1(x) . . . y0 n(x) , V (x) = v0 1(x) . . . v0 n(x)

注意事项

本文(变分法讲义_第四章)为本站会员(w****i)主动上传,金锄头文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即阅读金锄头文库的“版权提示”【网址:https://www.jinchutou.com/h-59.html】,按提示上传提交保证函及证明材料,经审查核实后我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.