
湖北省宜昌市长阳县第一高级中学2024届数学高一下期末经典试题含解析.doc
16页湖北省宜昌市长阳县第一高级中学2024届数学高一下期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②2.若直线被圆截得弦长为4,则的最小值是( )A.9 B.4 C. D.3.已知数列的通项公式为,则72是这个数列的( )A.第7项 B.第8项 C.第9项 D.第10项4.若,则( )A. B. C. D.5.执行如下图所示的程序框图,若输出的,则输入的的值为( )A. B. C. D.6.已知关于的不等式的解集是,则的值是( )A. B. C. D.7.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为( )A.1 B.2 C.3 D.48.已知数列满足,,则的值为( )A.2 B.-3 C. D.9.不等式的解集是:A. B.C. D.10.空间直角坐标系中,点关于轴对称的点的坐标是( )A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.若函数的图象与直线恰有两个不同交点,则的取值范围是________.12.空间一点到坐标原点的距离是_______.13.已知数列的前n项和,则________.14.已知点是所在平面内的一点,若,则__________.15.函数的最小正周期是__________.16.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.18.中,D是边BC上的点,满足,,.(1)求;(2)若,求BD的长.19.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.20.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?21.已知向量,向量为单位向量,向量与的夹角为.(1)若向量与向量共线,求;(2)若与垂直,求.参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据面面垂直,面面平行的判定定理判断即可得出答案详解】①若,则在平面内必有一条直线使,又即,则,故正确②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题2、A【解析】圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得满足的关系,用“1”的代换结合基本不等式求得的最小值.【详解】圆标准方程为,圆心为,半径为,直线被圆截得弦长为4,则圆心在直线上,∴,,又,∴,当且仅当,即时等号成立.∴的最小值是1.故选:A.【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得的关系,然后用“1”的代换法把凑配出可用基本不等式的形式,从而可求得最值.3、B【解析】根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.4、C【解析】由及即可得解.【详解】由,可得.故选C.【点睛】本题主要考查了同角三角函数的基本关系及二倍角公式,属于基础题.5、D【解析】 由题意,当输入,则;;; ,终止循环,则输出,所以,故选D.6、A【解析】先利用韦达定理得到关于a,b的方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.7、C【解析】数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法: 为递增数列. 计算: ,整数部分为0 ,整数部分为1 ,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.8、D【解析】先通过列举找到数列的周期,再利用数列的周期求值.【详解】由题得,所以数列的周期为4,所以.故选:D【点睛】本题主要考查递推数列和数列的周期,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解析】把不等式转化为不等式,即可求解,得到答案.【详解】由题意,不等式,等价于,解得,即不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。
11、【解析】作出函数的图像,根据图像可得答案.【详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【点睛】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.12、【解析】直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.13、【解析】先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.14、【解析】设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.15、;【解析】利用余弦函数的最小正周期公式即可求解.【详解】因为函数, 所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.16、【解析】作交于,连接,可得 是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,, 是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【点睛】本题考查异面直线所成的角,属于中档题.三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1),值域为(2)【解析】(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【点睛】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.18、(1)(2)【解析】(1)由中,D是边BC上的点,根据面积关系求得,再结合正弦定理,即可求解.(2)由,化简得到,再结合,解得,进而利用勾股定理求得的长.【详解】(1)由题意,在中,D是边BC上的点,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【点睛】本题主要考查了三角形的正弦定理和三角形的面积公式的应用,其中解答中熟记解三角形的正弦定理,以及熟练应用三角的面积关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为 .由与轴的交点为 关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为 .故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,. 由于,可得.又,所以. 由得,满足,故.点睛:⑴求圆的方程一般有两种方法:① 待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程; ②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.20、当时,最大,最大值为【解析】设,,在中,由余弦定理,基本不等式可得,根据三角形的面积公式即可求解.【详解】解:设,在中,由余弦定理得:,由基本不等式,,可得,当且仅当时取等号,∴,当且仅当时取等号,此时,∴当时,最大,最大值为.【点睛】本题主要考查余弦定理,基本不等式,三角形的面积公式的综合应用,考查了计算能力和转化思想,属于基础题.21、(1)(2)【解析】(1)共线向量夹角为0°或180°,由此根据定义可求得两向量数量积.(2)由向量垂直转化为向量的当量积为0,从而求得,也就求得,再由余弦的二倍角公式可得.【详解】法一(1),故或向量,向量法二(1),设。