
广东省河源市东源县高中数学 第一章 集合与函数概念 1.3.1 函数的定义域练习 新人教A版必修1.doc
3页1.3.1 函数的定义域常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(5)y=ax(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞).(7)y=tan x的定义域为.对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈ [a,b]上的值域.(1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.[例1] y= -log2(4-x2)的定义域是( )A.(-2,0)∪(1,2) B.(-2,0]∪(1,2)C.(-2,0)∪[1,2) D.[-2,0]∪[1,2]1.函数f(x)=的定义域为( )A.[1,10] B.[1,2)∪(2,10]C.(1,10] D.(1,2)∪(2,10]解析:选D 要使函数f(x)有意义,则x须满足即解得1 为了提高酶的产量,研究人员欲利用诱变育种的方法获得能产生较多淀粉酶的菌株3。









![2019版 人教版 高中语文 必修 上册《第一单元》大单元整体教学设计[2020课标]](http://img.jinchutou.com/static_www/Images/s.gif)


